Jessica L. Will
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica L. Will.
PLOS Genetics | 2008
Daniel J. Kvitek; Jessica L. Will; Audrey P. Gasch
Interactions between an organism and its environment can significantly influence phenotypic evolution. A first step toward understanding this process is to characterize phenotypic diversity within and between populations. We explored the phenotypic variation in stress sensitivity and genomic expression in a large panel of Saccharomyces strains collected from diverse environments. We measured the sensitivity of 52 strains to 14 environmental conditions, compared genomic expression in 18 strains, and identified gene copy-number variations in six of these isolates. Our results demonstrate a large degree of phenotypic variation in stress sensitivity and gene expression. Analysis of these datasets reveals relationships between strains from similar niches, suggests common and unique features of yeast habitats, and implicates genes whose variable expression is linked to stress resistance. Using a simple metric to suggest cases of selection, we found that strains collected from oak exudates are phenotypically more similar than expected based on their genetic diversity, while sake and vineyard isolates display more diverse phenotypes than expected under a neutral model. We also show that the laboratory strain S288c is phenotypically distinct from all of the other strains studied here, in terms of stress sensitivity, gene expression, Ty copy number, mitochondrial content, and gene-dosage control. These results highlight the value of understanding the genetic basis of phenotypic variation and raise caution about using laboratory strains for comparative genomics.
Molecular Breeding | 1999
Thomas Ziegelhoffer; Jessica L. Will; Sandra Austin-Phillips
The genes encoding thermostable cellulases E2 and E3 of Thermomonospora fusca were expressed in plants under the control of the constitutive, hybrid Mac promoter. For both E2 and E3, the genes were modified so as to remove the sequence encoding the bacterial leader peptide. Western blot analysis indicated that expression levels of recombinant cellulase in tobacco lines ranged up to about 0.1% (E2) and 0.02% of soluble protein (E3). No phenotypic effect of cellulase expression was noted. Recombinant E2 expressed in either tobacco or alfalfa was active and retained heat stability. These findings are an important first step in the development of crop plants as a production system for cellulases.
Genome Biology | 2009
Adriana L Alejandro-Osorio; Dana J. Huebert; Dominic T Porcaro; Megan E Sonntag; Songdet Nillasithanukroh; Jessica L. Will; Audrey P. Gasch
BackgroundYeast responding to stress activate a large gene expression program called the Environmental Stress Response that consists of approximately 600 repressed genes and approximately 300 induced genes. Numerous factors are implicated in regulating subsets of Environmental Stress Response genes; however, a complete picture of Environmental Stress Response regulation remains unclear. We investigated the role of the histone deacetylase Rpd3p, previously linked to the upstream regions of many Environmental Stress Response genes, in producing Environmental Stress Response gene expression changes in response to stress.ResultsWe found that the Rpd3-Large complex is required for proper expression of both induced and repressed Environmental Stress Response genes under multiple stress conditions. Cells lacking RPD3 or the Rpd3-Large subunit PHO23 had a major defect in Environmental Stress Response initiation, particularly during the transient phase of expression immediately after stress exposure. Chromatin-immunoprecipitation showed a direct role for Rpd3-Large at representative genes; however, there were different effects on nucleosome occupancy and histone deacetylation at different promoters. Computational analysis implicated regulators that may act with Rpd3p at Environmental Stress Response genes. We provide genetic and biochemical evidence that Rpd3p is required for binding and action of the stress-activated transcription factor Msn2p, although the contribution of these factors differs for different genes.ConclusionsOur results implicate Rpd3p as an important co-factor in the Environmental Stress Response regulatory network, and suggest the importance of histone modification in producing transient changes in gene expression triggered by stress.
Genetics | 2012
Qiaoning Guan; Suraiya Haroon; Diego González Bravo; Jessica L. Will; Audrey P. Gasch
Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria “remembering” prior nutritional status and amoeba “learning” to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H2O2. We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H2O2 resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H2O2 resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H2O2 tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.
Molecular Systems Biology | 2014
Deborah Chasman; Yi-Hsuan Ho; David B. Berry; Corey M. Nemec; Matthew E. MacGilvray; James Hose; Anna E. Merrill; M. Violet Lee; Jessica L. Will; Joshua J. Coon; Aseem Z. Ansari; Mark Craven; Audrey P. Gasch
Stressed cells coordinate a multi‐faceted response spanning many levels of physiology. Yet knowledge of the complete stress‐activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho‐proteome changes in cells responding to salt stress, to infer the salt‐responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress‐defense genes with reduction of growth‐related transcripts. We find that the orthologous human network is enriched for cancer‐causing genes, underscoring the importance of the subnetworks predictions in understanding stress biology.
Genetics | 2014
Jeffrey A. Lewis; Aimee Teo Broman; Jessica L. Will; Audrey P. Gasch
Natural variation in gene expression is pervasive within and between species, and it likely explains a significant fraction of phenotypic variation between individuals. Phenotypic variation in acute systemic responses can also be leveraged to reveal physiological differences in how individuals perceive and respond to environmental perturbations. We previously found extensive variation in the transcriptomic response to acute ethanol exposure in two wild isolates and a common laboratory strain of Saccharomyces cerevisiae. Many expression differences persisted across several modules of coregulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. Here, we conducted expression QTL mapping of the ethanol response in two strain crosses to identify the genetic basis for these differences. To understand systemic differences, we focused on “hotspot” loci that affect many transcripts in trans. Candidate causal regulators contained within hotspots implicate upstream regulators as well as downstream effectors of the ethanol response. Overlap in hotspot targets revealed additive genetic effects of trans-acting loci as well as “epi-hotspots,” in which epistatic interactions between two loci affected the same suites of downstream targets. One epi-hotspot implicated interactions between Mkt1p and proteins linked to translational regulation, prompting us to show that Mkt1p localizes to P bodies upon ethanol stress in a strain-specific manner. Our results provide a glimpse into the genetic architecture underlying natural variation in a stress response and present new details on how yeast respond to ethanol stress.
Molecular Biology and Evolution | 2015
Katie J. Clowers; Justin Heilberger; Jeff S. Piotrowski; Jessica L. Will; Audrey P. Gasch
How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.
Molecular Ecology | 2015
Katie J. Clowers; Jessica L. Will; Audrey P. Gasch
Differential adaptation to distinct niches can restrict gene flow and promote population differentiation within a species. However, in some cases the distinction between niches can collapse, forming a hybrid niche with features of both environments. We previously reported that distinctions between vineyards and oak soil present an ecological barrier that restricts gene flow between lineages of Saccharomyces cerevisiae. Vineyard isolates are tolerant to stresses associated with grapes while North American oak strains are particularly tolerant to freeze–thaw cycles. Here, we report the isolation of S. cerevisiae strains from Wisconsin cherry trees, which display features common to vineyards (e.g. high sugar concentrations) and frequent freeze–thaw cycles. Genome sequencing revealed that the isolated strains are highly heterozygous and represent recent hybrids of the oak × vineyard lineages. We found that the hybrid strains are phenotypically similar to vineyard strains for some traits, but are more similar to oak strains for other traits. The cherry strains were exceptionally good at growing in cherry juice, raising the possibility that they have adapted to this niche. We performed transcriptome profiling in cherry, oak and vineyard strains and show that the cherry‐tree hybrids display vineyard‐like or oak‐like expression, depending on the gene sets, and in some cases, the expression patterns linked back to shared stress tolerances. Allele‐specific expression in these natural hybrids suggested concerted cis‐regulatory evolution at sets of functionally regulated genes. Our results raise the possibility that hybridization of the two lineages provides a genetic solution to the thriving in this unique niche.
Annals of Botany | 2005
Robyn M. Perrin; Li-Sen Young; U.M. Narayana Murthy; Benjamin R. Harrison; Yan Wang; Jessica L. Will; Patrick Masson
Plant Journal | 2007
Robyn M. Perrin; Yan Wang; Christen Y.L. Yuen; Jessica L. Will; Patrick Masson