Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica L. Wisnowski is active.

Publication


Featured researches published by Jessica L. Wisnowski.


Cerebral Cortex | 2013

Metabolic Maturation of the Human Brain From Birth Through Adolescence: Insights From In Vivo Magnetic Resonance Spectroscopy

Stefan Blüml; Jessica L. Wisnowski; Marvin D. Nelson; Lisa Paquette; Floyd H. Gilles; Hannah C. Kinney; Ashok Panigrahy

Between birth and late adolescence, the human brain undergoes exponential maturational changes. Using in vivo magnetic resonance spectroscopy, we determined the developmental profile for 6 metabolites in 5 distinct brain regions based on spectra from 309 children from 0 to 18 years of age. The concentrations of N-acetyl-aspartate (an indicator for adult-type neurons and axons), creatine (energy metabolite), and glutamate (excitatory neurotransmitter) increased rapidly between birth and 3 months, a period of rapid axonal growth and synapse formation. Myo-inositol, implicated in cell signaling and a precursor of membrane phospholipid, as well as an osmolyte and astrocyte marker, declined rapidly during this period. Choline, a membrane metabolite and indicator for de novo myelin and cell membrane synthesis, peaked from birth until approximately 3 months, and then declined gradually, reaching a plateau at early childhood. Similarly, taurine, involved in neuronal excitability, synaptic potentiation, and osmoregulation, was high until approximately 3 months and thereafter declined. These data indicate that the first 3 months of postnatal life are a critical period of rapid metabolic changes in the development of the human brain. This study of the developmental profiles of the major brain metabolites provides essential baseline information for future analyses of the pediatric health and disease.


Pediatric Radiology | 2012

Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

Ashok Panigrahy; Jessica L. Wisnowski; Andre D. Furtado; Natasha Lepore; Lisa Paquette; Stefan Bluml

For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the “connectome” is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental outcomes, instruments to assess the efficacy of neuroprotective agents and maneuvers in the NICU, and as screening instruments to appropriately select infants for longitudinal developmental interventions.


NeuroImage: Clinical | 2015

Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries

Ashok Panigrahy; Vincent J. Schmithorst; Jessica L. Wisnowski; Christopher G. Watson; David C. Bellinger; Jane W. Newburger; Michael J. Rivkin

Patients with congenital heart disease (CHD) are at risk for neurocognitive impairments. Little is known about the impact of CHD on the organization of large-scale brain networks. We applied graph analysis techniques to diffusion tensor imaging (DTI) data obtained from 49 adolescents with dextro-transposition of the great arteries (d-TGA) repaired with the arterial switch operation in early infancy and 29 healthy referent adolescents. We examined whether differences in neurocognitive functioning were related to white matter network topology. We developed mediation models revealing the respective contributions of peri-operative variables and network topology on cognitive outcome. Adolescents with d-TGA had reduced global efficiency at a trend level (p = 0.061), increased modularity (p = 0.012), and increased small-worldness (p = 0.026) as compared to controls. Moreover, these network properties mediated neurocognitive differences between the d-TGA and referent adolescents across every domain assessed. Finally, structural network topology mediated the neuroprotective effect of longer duration of core cooling during reparative neonatal cardiac surgery, as well as the detrimental effects of prolonged hospitalization. Taken together, worse neurocognitive function in adolescents with d-TGA is mediated by global differences in white matter network topology, suggesting that disruption of this configuration of large-scale networks drives neurocognitive dysfunction. These data provide new insights into the interplay between perioperative factors, brain organization, and cognition in patients with complex CHD.


PLOS ONE | 2014

Metabolic Maturation of White Matter Is Altered in Preterm Infants

Stefan Bluml; Jessica L. Wisnowski; Marvin D. Nelson; Lisa Paquette; Ashok Panigrahy

Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used in vivo magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340–370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.


Journal of Cerebral Blood Flow and Metabolism | 2016

The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: An in vivo 1H-MR spectroscopy study

Jessica L. Wisnowski; Tai-Wei Wu; Aaron J. Reitman; Claire McLean; Philippe Friedlich; Douglas Vanderbilt; Eugenia Ho; Marvin D. Nelson; Ashok Panigrahy; Stefan Bluml

Therapeutic hypothermia has emerged as the first empirically supported therapy for neuroprotection in neonates with hypoxic-ischemic encephalopathy (HIE). We used magnetic resonance spectroscopy (1H-MRS) to characterize the effects of hypothermia on energy metabolites, neurotransmitters, and antioxidants. Thirty-one neonates with HIE were studied during hypothermia and after rewarming. Metabolite concentrations (mmol/kg) were determined from the thalamus, basal ganglia, cortical grey matter, and cerebral white matter. In the thalamus, phosphocreatine concentrations were increased by 20% during hypothermia when compared to after rewarming (3.49 ± 0.88 vs. 2.90 ± 0.65, p < 0.001) while free creatine concentrations were reduced to a similar degree (3.00 ± 0.50 vs. 3.74 ± 0.85, p < 0.001). Glutamate (5.33 ± 0.82 vs. 6.32 ± 1.12, p < 0.001), aspartate (3.39 ± 0.66 vs. 3.87 ± 1.19, p < 0.05), and GABA (0.92 ± 0.36 vs. 1.19 ± 0.41, p < 0.05) were also reduced, while taurine (1.39 ± 0.52 vs. 0.79 ± 0.61, p < 0.001) and glutathione (2.23 ± 0.41 vs. 2.09 ± 0.33, p < 0.05) were increased. Similar patterns were observed in other brain regions. These findings support that hypothermia improves energy homeostasis by decreasing the availability of excitatory neurotransmitters, and thereby, cellular energy demand.


PLOS ONE | 2013

Altered Glutamatergic Metabolism Associated with Punctate White Matter Lesions in Preterm Infants

Jessica L. Wisnowski; Stefan Bluml; Lisa Paquette; Elizabeth M. Zelinski; Marvin D. Nelson; Michael J. Painter; Hanna Damasio; Floyd H. Gilles; Ashok Panigrahy

Preterm infants (∼10% of all births) are at high-risk for long-term neurodevelopmental disabilities, most often resulting from white matter injury sustained during the neonatal period. Glutamate excitotoxicity is hypothesized to be a key mechanism in the pathogenesis of white matter injury; however, there has been no in vivo demonstration of glutamate excitotoxicity in preterm infants. Using magnetic resonance spectroscopy (MRS), we tested the hypothesis that glutamate and glutamine, i.e., markers of glutamatergic metabolism, are altered in association with punctate white matter lesions and “diffuse excessive high signal intensity” (DEHSI), the predominant patterns of preterm white matter injury. We reviewed all clinically-indicated MRS studies conducted on preterm infants at a single institution during a six-year period and determined the absolute concentration of glutamate, glutamine, and four other key metabolites in the parietal white matter in 108 of those infants after two investigators independently evaluated the studies for punctate white matter lesions and DEHSI. Punctate white matter lesions were associated with a 29% increase in glutamine concentration (p = 0.002). In contrast, there were no differences in glutamatergic metabolism in association with DEHSI. Severe DEHSI, however, was associated with increased lactate concentration (p = 0.001), a marker of tissue acidosis. Findings from this study support glutamate excitotoxicity in the pathogenesis of punctate white matter lesions, but not necessarily in DEHSI, and suggest that MRS provides a useful biomarker for determining the pathogenesis of white matter injury in preterm infants during a period when neuroprotective agents may be especially effective.


Journal of Clinical and Experimental Neuropsychology | 2009

Consistency of neuropsychological outcome following damage to prefrontal cortex in the first years of life

Steven W. Anderson; Jessica L. Wisnowski; Joseph Barrash; Hanna Damasio; Daniel Tranel

The consistency of neuropsychological outcome following circumscribed damage to the prefrontal cortex (PFC) in the first years of life has not been systematically investigated. On the basis of a single well-studied case, Ackerly and Benton (1948) postulated that the core profile involves development of a primary social defect in the context of generally normal intellectual abilities. We evaluated the consistency of this profile across all patients in our registry who had focal PFC damage acquired between the prenatal period and 62 months of age (N = 7). Clinical ratings based on detailed evaluations, parental ratings, and neuropsychological testing confirmed this general profile in 5 of the 7 patients. The impairments of social function were evident in early childhood and persisted into adult life. Of the 2 patients who did not fit this profile, 1 had significant social impairment in the context of broader cognitive deficits, and 1 had no significant impairment of social or intellectual function. The profile was not observed in a comparison group with childhood-onset nonfrontal lesions. These findings support the notion that focal damage to PFC in the first years of life leads to the development of substantial impairment of social competencies, albeit with some variability in outcome. Further, the findings highlight the importance of emotional dysfunction and poor behavior regulation in the development of these impairments. Our studies recapitulate and confirm the core messages set forth by Ackerly and Benton more than a half-century ago.


Seminars in Perinatology | 2014

Magnetic Resonance Imaging of Bilirubin Encephalopathy: Current Limitations and Future Promise

Jessica L. Wisnowski; Ashok Panigrahy; Michael J. Painter; Jon F. Watchko

Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted magnetic resonance imaging of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early magnetic resonance imaging of at-risk infants, while frequently showing increased T1-signal in these regions, may give false-positive findings due to the presence of myelin in these structures. Advanced magnetic resonance imaging including diffusion-weighted imaging, magnetic resonance spectroscopy, and diffusion tensor imaging with tractography may shed new insights into the pathogenesis of bilirubin-induced brain injury and the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy.


Neuroreport | 2015

Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity.

Andrew J. Degnan; Jessica L. Wisnowski; Soyoung Choi; Rafael Ceschin; Chitresh Bhushan; Richard M. Leahy; Patricia Corby; Vincent J. Schmithorst; Ashok Panigrahy

Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34–36 6/7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.


Magnetic Resonance in Medicine | 2017

Diffusion-relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure: A Multidimensional Approach for Probing Microstructure

Daeun Kim; Eamon K. Doyle; Jessica L. Wisnowski; Joong Hee Kim; Justin P. Haldar

To propose and evaluate a novel multidimensional approach for imaging subvoxel tissue compartments called Diffusion‐Relaxation Correlation Spectroscopic Imaging.

Collaboration


Dive into the Jessica L. Wisnowski's collaboration.

Top Co-Authors

Avatar

Ashok Panigrahy

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stefan Bluml

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Lisa Paquette

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Marvin D. Nelson

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Justin P. Haldar

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Ceschin

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Daeun Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitresh Bhushan

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge