Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Legradi is active.

Publication


Featured researches published by Jessica Legradi.


Reproductive Toxicology | 2009

Zebrafish embryos as models for embryotoxic and teratological effects of chemicals

Lixin Yang; Nga Yu Ho; Rüdiger Alshut; Jessica Legradi; Carsten Weiss; Markus Reischl; Ralf Mikut; Urban Liebel; Ferenc Müller; Uwe Strähle

The experimental virtues of the zebrafish embryo such as small size, development outside of the mother, cheap maintenance of the adult made the zebrafish an excellent model for phenotypic genetic and more recently also chemical screens. The availability of a genome sequence and several thousand mutants and transgenic lines together with gene arrays and a broad spectrum of techniques to manipulate gene functions add further to the experimental strength of this model. Pioneering studies suggest that chemicals can have in many cases very similar toxicological and teratological effects in zebrafish embryos and humans. In certain areas such as cardiotoxicity, the zebrafish appears to outplay the traditional rodent models of toxicity testing. Several pilot projects used zebrafish embryos to identify new chemical entities with specific biological functions. In combination with the establishment of transgenic sensor lines and the further development of existing and new automated imaging systems, the zebrafish embryos could therefore be used as cost-effective and ethically acceptable animal models for drug screening as well as toxicity testing.


Genome Biology | 2007

Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo.

Lixin Yang; Jules R Kemadjou; Christian Zinsmeister; Matthias Bauer; Jessica Legradi; Ferenc Müller; Michael Pankratz; Jens Jäkel; Uwe Strähle

BackgroundEarly life stages are generally most sensitive to toxic effects. Our knowledge on the action of manmade chemicals on the developing vertebrate embryo is, however, rather limited. We addressed the toxicogenomic response of the zebrafish embryo in a systematic manner by asking whether distinct chemicals would induce specific transcriptional profiles.ResultsWe exposed zebrafish embryos to a range of environmental toxicants and measured the changes in gene-expression profiles by hybridizing cDNA to an oligonucleotide microarray. Several hundred genes responded significantly to at least one of the 11 toxicants tested. We obtained specific expression profiles for each of the chemicals and could predict the identity of the toxicant from the expression profiles with high probability. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. The toxicogenomic profiles were highly stage specific and we detected tissue-specific gene responses, underscoring the sensitivity of the assay system.ConclusionOur results show that the genome of the zebrafish embryo responds to toxicant exposure in a highly sensitive and specific manner. Our work provides proof-of-principle for the use of the zebrafish embryo as a toxicogenomic model and highlights its potential for systematic, large-scale analysis of the effects of chemicals on the developing vertebrate embryo.


Environmental Science & Technology | 2013

Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury.

Nga Yu Ho; Lixin Yang; Jessica Legradi; Olivier Armant; Masanari Takamiya; Sepand Rastegar; Uwe Strähle

Methyl mercury (MeHg) is a neurotoxicant with adverse effects on the development of the nervous system from fish to man. Despite a detailed understanding of the molecular mechanisms by which MeHg affects cellular homeostasis, it is still not clear how MeHg causes developmental neurotoxicity. We performed here a genome-wide transcriptional analysis of MeHg-exposed zebrafish embryos and combined this with a whole-mount in situ expression analysis of 88 MeHg-affected genes. The majority of the analyzed genes showed tissue- and region-restricted responses in various organs and tissues. The genes were linked to gene ontology terms like oxidative stress, transport and cell protection. Areas even within the central nervous system (CNS) are affected differently resulting in distinct cellular stress responses. Our study revealed an unexpected heterogeneity in gene responses to MeHg exposure in different tissues and neuronal subregions, even though the known molecular action of MeHg would predict a similar burden of exposed cells. The overall structure of the developing brain of MeHg-exposed embryos appeared normal, suggesting that the mechanism leading to differentiation of the CNS is not overtly affected by exposure to MeHg. We propose that MeHg disturbs the function of the CNS by disturbing the cellular homeostasis. As these cellular stress responses comprise genes that are also involved in normal neuronal activity and learning, MeHg may affect the developing CNS in a subtle manner that manifests itself in behavioral deficits.


Environmental Science & Technology | 2014

Disruption of oxidative phosphorylation (OXPHOS) by hydroxylated polybrominated diphenyl ethers (OH-PBDEs) present in the marine environment

Jessica Legradi; Anna-Karin Dahlberg; P.H. Cenijn; Göran Marsh; Lillemor Asplund; Åke Bergman; Juliette Legler

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of growing concern, as they have been detected in both humans and wildlife and have been shown to be toxic. Recent studies have indicated that OH-PBDEs can be more toxic than PBDEs, partly due to their ability to disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. In this study, we determined the OXPHOS disruption potential of 18 OH-PBDE congeners reported in marine wildlife using two in vitro bioassays, namely the classic rat mitochondrial respiration assay, and a mitochondrial membrane potential assay using zebrafish PAC2 cells. Single OH-PBDE congeners as well as mixtures were tested to study potential additive or synergistic effects. An environmental mixture composed of seven OH-PBDE congeners mimicking the concentrations reported in Baltic blue mussels were also studied. We report that all OH-PBDEs tested were able to disrupt OXPHOS via either protonophoric uncoupling and/or inhibition of the electron transport chain. Additionally we show that OH-PBDEs tested in combinations as found in the environment have the potential to disrupt OXPHOS. Importantly, mixtures of OH-PBDEs may show very strong synergistic effects, stressing the importance of further research on the in vivo impacts of these compounds in the environment.


Reproductive Toxicology | 2012

A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments

Thomas Kosmehl; Jens C. Otte; Lixin Yang; Jessica Legradi; Kerstin Bluhm; Christian Zinsmeister; Steffen Keiter; Georg Reifferscheid; Werner Manz; Thomas Braunbeck; Uwe Strähle; Henner Hollert

The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This proof-of-concept study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in sediment extracts. For this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Mechanism-specific biotests indicated a defined hazard potential of the sediment extracts, and microarray analysis revealed several classes of significantly regulated genes which could be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism.


Developmental Biology | 2013

Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos

Olivier Armant; Martin März; Rebecca Schmidt; Marco Ferg; Nicolas Diotel; Raymond Ertzer; Jan Christian Bryne; Lixin Yang; Isabelle Baader; Markus Reischl; Jessica Legradi; Ralf Mikut; Derek L. Stemple; Wilfred van IJcken; Antoine van der Sloot; Boris Lenhard; Uwe Strähle; Sepand Rastegar

Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.


Environmental Science & Technology | 2016

Changes in Neurotransmitter Profiles during Early Zebrafish ( Danio rerio ) Development and after Pesticide Exposure

Sara Tufi; P.E.G. Leonards; M.H. Lamoree; Jacob de Boer; Juliette Legler; Jessica Legradi

During early development, neurotransmitters are important stimulants for the development of the central nervous system. Although the development of different neuronal cell types during early zebrafish (Danio rerio) development is well-studied, little is known of the levels of neurotransmitters, their precursors and metabolites during development, and how these levels are affected by exposure to environmental contaminants. A method based on hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry has been applied for the first time to zebrafish embryos and larvae to study five neurotransmitter systems in parallel, including the dopaminergic-andrenergic, glutaminergic-GABAnergic, serotoninergic, histaminergic, and cholinergic systems. Our method enables the quantification of neurotransmitters and their precursors and metabolites in whole zebrafish from the period of zygote to free-swimming larvae 6 days postfertilization (dpf). We observed a developmental stage-dependent pattern with clear differences between the first 2 days of development and the following days. Whereas the neurotransmitter levels steadily increased, the precursors showed a peak at 3 dpf. After exposure to several pesticides, significant differences in concentrations of neurotransmitters and precursors were observed. Our study revealed new insights about neurotransmitter systems during early zebrafish development and showed the usefulness of our approach for environmental neurotoxicity studies.


Science of The Total Environment | 2017

Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish

Qiqing Chen; Daqiang Yin; Yunlu Jia; Sabrina Schiwy; Jessica Legradi; Shouye Yang; Henner Hollert

Plastic particles have been proven to be abundant in the aquatic environment, raising concerns about their potential toxic effects. In the present study, we determined the bioaccumulation potential of bisphenol A (BPA) in adult zebrafish (Danio rerio) in the absence and presence of nano-sized plastic particles (nanoplastics, NPPs). Results show that BPA can accumulate in the viscera, gill, head and muscle of zebrafish with 85, 43, 20, and 3μg/g ww after 1d exposure. NPPs were also found to accumulate in different tissues of the fish. Relative equilibrium was reached after 1d exposure in different tissues with 39 to 636mg/kg ww. Co-exposure of NPPs and BPA led to a 2.2 and 2.6-fold significant increment of BPA uptake in the head and viscera, if compared with BPA alone treatment after 3d exposure. As such, we further investigated several neurotoxic biomarker alterations in the fish head. It was found that either BPA or NPPs can cause myelin basic protein (MBP)/gene up-regulation in the central nervous system (CNS); meanwhile, both contaminants exhibited significant inhibition of acetylcholinesterase (AChE) activity, which is a well-known representative biomarker for neurotoxicity. Moreover, for the co-exposure treatment, biomarkers of myeline and tubulin protein/gene expressions, dopamine content, and the mRNA expression of mesencephalic astrocyte derived neurotrophic factor (MANF) were all significantly up-regulated, suggesting that an enhanced neurotoxic effects in both CNS and dopaminergic system occurred. However, AChE activity was no more inhibited in the co-exposure treatment, which implies that solely AChE measurement may not be sufficient to identify neurotoxic effects in the cholinergic system. Overall, the present study demonstrates that the presence of NPPs can increase BPA bioavailability and cause neurotoxicity in adult zebrafish.


KI'10 Proceedings of the 33rd annual German conference on Advances in artificial intelligence | 2010

Methods for automated high-throughput toxicity testing using Zebrafish embryos

Rüdiger Alshut; Jessica Legradi; Urban Liebel; Lixin Yang; Jos van Wezel; Uwe Strähle; Ralf Mikut; Markus Reischl

In this paper, an automated process to extract experiment-specific parameters out of microscope images of zebrafish embryos is presented and applied to experiments consisting of toxicological treated zebrafish embryos. The treatments consist of a dilution series of several compounds. A custom built graphical user interface allows an easy labeling and browsing of the image data. Subsequently image-specific features are extracted for each image based on image processing algorithms. By means of feature selection, the most significant features are determined and a classification divides the images in two classes. Out of the classification results dose-response curves as well as frequently used general indicators of substances acute toxicity can be automatically calculated. Exemplary the median lethal dose is determined. The presented approach was designed for real high-throughput screening including data handling and the results are stored in a long-time data storage and prepared to be processed on a cluster computing system being build up in the KIT. It provides the possibility to test any amount of chemical substances in highthroughput and is, in combination with new screening microscopes, able to manage ten thousands of risk tests required e.g. in the REACH framework or for drug discovery.


Science of The Total Environment | 2017

Bisphenol A alternatives in thermal paper from the Netherlands, Spain, Sweden and Norway. Screening and potential toxicity

Maria K. Björnsdotter; Willem Jonker; Jessica Legradi; Jeroen Kool; Ana Ballesteros-Gómez

Thermal paper contains potentially toxic additives, such as bisphenol A (BPA), as a common color developer. Because of its known endocrine disrupting effects, structural analogues to BPA, such as bisphenol S (BPS), D-8 and Pergafast 201, have been used as alternatives, but little is known about the presence and toxicological effects of alternatives other than BPS. In this study, thermal paper is screened by direct probe ambient mass spectrometry (rapid pre-screening method not requiring sample preparation) and by liquid chromatography (LC) with high resolution time-of flight (TOF-MS) mass spectrometry. Cash receipts and other thermal paper products (cinema tickets, boarding passes and luggage tags) were analyzed. Besides BPA and BPS, other developers only recently reported (Pergafast 201, D-8) or to the best of our knowledge not reported before (D-90, TGSA, BPS-MAE) were frequently found as well as some related unreported impurities (2,4-BPS that is a BPS related impurity and a TGSA related impurity). To gain some insight into the potential estrogenicity of the detected developers, a selection of extracts was further analyzed using a LC-nanofractionation platform in combination with cell-based bioassay testing. These preliminary results seems to indicate very low or absence of estrogenic activity for Pergafast 201, D-8, D-90, TGSA and BPS-MAE in comparison to BPA and BPS, although further dose-response tests with authentic standards are required to confirm these results. Compounds for which standards were available were also tested for developmental toxicity and neurotoxicity using zebrafish (Danio rerio) embryos. TGSA and D-8 induced similar teratogenic effects as BPA in zebrafish embryos. BPS and 2,4-BPS did not induce any developmental effects but 2,4-BPS did alter the locomotor activity at the tested concentration. Our findings suggest that the alternatives used as alternatives to BPA (except BPS) might not be estrogenic. However, TGSA and D-8 showed abnormal developmental effects similar to BPA.

Collaboration


Dive into the Jessica Legradi's collaboration.

Top Co-Authors

Avatar

Uwe Strähle

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixin Yang

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Reischl

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ralf Mikut

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rüdiger Alshut

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Legler

Brunel University London

View shared research outputs
Top Co-Authors

Avatar

Urban Liebel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M.H. Lamoree

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge