Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Milman is active.

Publication


Featured researches published by Jessica Milman.


The Lancet | 2004

Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial

Pedro L. Alonso; Jahit Sacarlal; John J. Aponte; Amanda Leach; Eusebio Macete; Jessica Milman; Inacio Mandomando; Bart Spiessens; Caterina Guinovart; Mateu Espasa; Quique Bassat; Pedro Aide; Opokua Ofori-Anyinam; Margarita M. Navia; Sabine Corachan; Marc Ceuppens; Marie-Claude Dubois; Marie-Ange Demoitié; Filip Dubovsky; Clara Menéndez; Nadia Tornieporth; W. Ripley Ballou; Ricardo Thompson; Joe Cohen

BACKGROUND Development of an effective malaria vaccine could greatly contribute to disease control. RTS,S/AS02A is a pre-erythrocytic vaccine candidate based on Plasmodium falciparum circumsporozoite surface antigen. We aimed to assess vaccine efficacy, immunogenicity, and safety in young African children. METHODS We did a double-blind, phase IIb, randomised controlled trial in Mozambique in 2022 children aged 1-4 years. The study included two cohorts of children living in two separate areas which underwent different follow-up schemes. Participants were randomly allocated three doses of either RTS,S/AS02A candidate malaria vaccine or control vaccines. The primary endpoint, determined in cohort 1 (n=1605), was time to first clinical episode of P falciparum malaria (axillary temperature > or =37.5 degrees C and P falciparum asexual parasitaemia >2500 per microL) over a 6-month surveillance period. Efficacy for prevention of new infections was determined in cohort 2 (n=417). Analysis was per protocol. FINDINGS 115 children in cohort 1 and 50 in cohort 2 did not receive all three doses and were excluded from the per-protocol analysis. Vaccine efficacy for the first clinical episodes was 29.9% (95% CI 11.0-44.8; p=0.004). At the end of the 6-month observation period, prevalence of P falciparum infection was 37% lower in the RTS,S/AS02A group compared with the control group (11.9% vs 18.9%; p=0.0003). Vaccine efficacy for severe malaria was 57.7% (95% CI 16.2-80.6; p=0.019). In cohort 2, vaccine efficacy for extending time to first infection was 45.0% (31.4-55.9; p<0.0001). INTERPRETATION The RTS,S/AS02A vaccine was safe, well tolerated, and immunogenic. Our results show development of an effective vaccine against malaria is feasible.


The Lancet | 2005

Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial

Pedro L. Alonso; Jahit Sacarlal; John J. Aponte; Amanda Leach; Eusebio Macete; Pedro Aide; Betuel Sigaúque; Jessica Milman; Inacio Mandomando; Quique Bassat; Caterina Guinovart; Mateu Espasa; Sabine Corachan; Marc Lievens; Margarita M. Navia; Marie-Claude Dubois; Clara Menéndez; Filip Dubovsky; Joe Cohen; Ricardo Thompson; W. Ripley Ballou

BACKGROUND RTS,S/AS02A is a pre-erythrocytic stage malaria vaccine that provides partial protection against infection in malaria-naive adult volunteers and hyperimmune adults. A previous report showed that this vaccine reduced risk of clinical malaria, delayed time to new infection, and reduced episodes of severe malaria over 6 months in African children. An important remaining issue is the durability of protection against clinical disease in these children. METHODS We did a randomised, controlled, phase IIb trial of RTS,S/AS02A given at 0, 1, and 2 months in 2022 Mozambican children aged 1-4 years. We previously determined vaccine efficacy (VE) against clinical malaria in a double-blind phase that included study months 2.5-8.5 (VE(2.5-8.5)). We now report VE in a single-blind phase up to month 21 (VE(8.5-21)). The primary endpoint was time to first or only clinical episode of Plasmodium falciparum malaria (axillary temperature 37.5 degrees C and P falciparum asexual parasitaemia >2500 per microL) detected through a passive case detection system. We also determined VE for other case definitions and for episodes of severe malaria. This study is registered with the ClinicalTrials.gov identifier NCT00197041. FINDINGS During the single-blind phase, VE(8.5-21) was 28.9% (95% CI 8.4-44.8; p=0.008). At month 21, prevalence of P falciparum infection was 29% lower in the RTS,S/AS02A group than in the control (p=0.017). Considering the entire study period, VE(2.5-21) was 35.3% (95% CI 21.6-46.6; p<0.0001) and VE(2.5-21) for severe malaria was 48.6% (95% CI 12.3-71.0; p=0.02). INTERPRETATION These results show that RTS,S/AS02A confers partial protection in African children aged 1-4 years living in rural endemic areas against a range of clinical disease caused by P falciparum for at least 18 months, and confirm the potential of malaria vaccines to become credible control tools for public-health use.


PLOS ONE | 2009

Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

Bernhards Ogutu; Odika J. Apollo; Denise McKinney; Willis Okoth; Joram Siangla; Filip Dubovsky; Kathryn Tucker; John N. Waitumbi; Carter Diggs; Janet Wittes; Elissa Malkin; Amanda Leach; Lorraine Soisson; Jessica Milman; Lucas Otieno; Carolyn A. Holland; Mark E. Polhemus; Shon Remich; Christian F. Ockenhouse; Joe Cohen; W. Ripley Ballou; Samuel K. Martin; Evelina Angov; V. Ann Stewart; Jeffrey A. Lyon; D. Gray Heppner; Mark R. Withers

Objective The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccines safety, immunogenicity, and efficacy in African children. Methods A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12–47 months in general good health.Children were randomised in a 1∶1 fashion to receive either FMP1/AS02 (50 µg) or Rabipur® rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature ≥37.5°C with asexual parasitaemia of ≥50,000 parasites/µL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. Results 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-142 antibody concentrations increased from1.3 µg/mL to 27.3 µg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: −26% to +28%; p-value = 0.7). Conclusions FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-142 vaccine development should focus on other formulations and antigen constructs. Trial Registration Clinicaltrials.gov NCT00223990


PLOS Clinical Trials | 2006

RTS,S/AS02A malaria vaccine does not induce parasite CSP T cell epitope selection and reduces multiplicity of infection.

Sonia Enosse; Carlota Dobaño; Diana Quelhas; John J. Aponte; Marc Lievens; Amanda Leach; Jahit Sacarlal; Brian Greenwood; Jessica Milman; Filip Dubovsky; Joe Cohen; Ricardo Thompson; W. Ripley Ballou; Pedro L. Alonso; David J. Conway; Colin J. Sutherland

Objective: The candidate malaria vaccine RTS,S/AS02A is a recombinant protein containing part of the circumsporozoite protein (CSP) sequence of Plasmodium falciparum, linked to the hepatitis B surface antigen and formulated in the proprietary adjuvant system AS02A. In a recent trial conducted in children younger than age five in southern Mozambique, the vaccine demonstrated significant and sustained efficacy against both infection and clinical disease. In a follow-up study to the main trial, breakthrough infections identified in the trial were examined to determine whether the distribution of csp sequences was affected by the vaccine and to measure the multiplicity of infecting parasite genotypes. Design: P. falciparum DNA from isolates collected during the trial was used for genotype studies. Setting: The main trial was carried out in the Manhiça district, Maputo province, Mozambique, between April 2003 and May 2004. Participants: Children from the two cohorts of the main trial provided parasite isolates as follows: children from Cohort 1 who were admitted to hospital with clinical malaria; children from Cohort 1 who were parasite-positive in a cross-sectional survey at study month 8.5; children from Cohort 2 identified as parasite-positive during follow-up by active detection of infection. Outcome: Divergence of DNA sequence encoding the CSP T cell–epitope region sequence from that of the vaccine sequence was measured in 521 isolates. The number of distinct P. falciparum genotypes was also determined. Results: We found no evidence that parasite genotypes from children in the RTS,S/AS02A arm were more divergent than those receiving control vaccines. For Cohort 1 (survey at study month 8.5) and Cohort 2, infections in the vaccine group contained significantly fewer genotypes than those in the control group, (p = 0.035, p = 0.006), respectively, for the two cohorts. This was not the case for children in Cohort 1 who were admitted to hospital (p = 0.478). Conclusions: RTS,S/AS02A did not select for genotypes encoding divergent T cell epitopes in the C-terminal region of CSP in this trial. In both cohorts, there was a modest reduction in the mean number of parasite genotypes harboured by vaccinated children compared with controls, but only among those with asymptomatic infections.


PLOS Clinical Trials | 2006

Safety and Reactogenicity of an MSP-1 Malaria Vaccine Candidate: A Randomized Phase Ib Dose-Escalation Trial in Kenyan Children

Mark R. Withers; Denise McKinney; Bernhards Ogutu; John N. Waitumbi; Jessica Milman; Odika J. Apollo; Otieno G Allen; Kathryn Tucker; Lorraine Soisson; Carter Diggs; Amanda Leach; Janet Wittes; Filip Dubovsky; V. Ann Stewart; Shon Remich; Joe Cohen; W. Ripley Ballou; Carolyn A. Holland; Jeffrey A. Lyon; Evelina Angov; José A. Stoute; Samuel K. Martin; D. Gray Heppner

Objective: Our aim was to evaluate the safety, reactogenicity, and immunogenicity of an investigational malaria vaccine. Design: This was an age-stratified phase Ib, double-blind, randomized, controlled, dose-escalation trial. Children were recruited into one of three cohorts (dosage groups) and randomized in 2:1 fashion to receive either the test product or a comparator. Setting: The study was conducted in a rural population in Kombewa Division, western Kenya. Participants: Subjects were 135 children, aged 12–47 mo. Interventions: Subjects received 10, 25, or 50 μg of falciparum malaria protein 1 (FMP1) formulated in 100, 250, and 500 μL, respectively, of AS02A, or they received a comparator (Imovax® rabies vaccine). Outcome Measures: We performed safety and reactogenicity parameters and assessment of adverse events during solicited (7 d) and unsolicited (30 d) periods after each vaccination. Serious adverse events were monitored for 6 mo after the last vaccination. Results: Both vaccines were safe and well tolerated. FMP1/AS02A recipients experienced significantly more pain and injection-site swelling with a dose-effect relationship. Systemic reactogenicity was low at all dose levels. Hemoglobin levels remained stable and similar across arms. Baseline geometric mean titers were comparable in all groups. Anti-FMP1 antibody titers increased in a dose-dependent manner in subjects receiving FMP1/AS02A; no increase in anti-FMP1 titers occurred in subjects who received the comparator. By study end, subjects who received either 25 or 50 μg of FMP1 had similar antibody levels, which remained significantly higher than that of those who received the comparator or 10 μg of FMP1. A longitudinal mixed effects model showed a statistically significant effect of dosage level on immune response (F3,1047 = 10.78, or F3, 995 = 11.22, p < 0.001); however, the comparison of 25 μg and 50 μg recipients indicated no significant difference (F1,1047 = 0.05; p = 0.82). Conclusions: The FMP1/AS02A vaccine was safe and immunogenic in malaria-exposed 12- to 47-mo-old children and the magnitude of immune response of the 25 and 50 μg doses was superior to that of the 10 μg dose.


Vaccine | 2005

Towards an RTS,S-Based, Multi-Stage, Multi-Antigen Vaccine Against Falciparum Malaria: Progress at the Walter Reed Army Institute of Research

D. Gray Heppner; Kent E. Kester; Christian F. Ockenhouse; Nadia Tornieporth; Opokua Ofori; Jeffrey A. Lyon; V. Ann Stewart; Patrice M. Dubois; David E. Lanar; Urszula Krzych; Philippe Moris; Evelina Angov; James F. Cummings; Amanda Leach; B. Ted Hall; Sheetij Dutta; Robert Schwenk; Collette J. Hillier; Arnoldo Barbosa; Lisa A. Ware; Lalitha P. V. Nair; Christian A. Darko; Mark R. Withers; Bernhards Ogutu; Mark E. Polhemus; Mark M. Fukuda; Sathit Pichyangkul; Montip Gettyacamin; Carter Diggs; Lorraine Soisson


Vaccine | 2007

Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya.

José A. Stoute; Joash Gombe; Mark R. Withers; Joram Siangla; Denise McKinney; Melanie Onyango; James F. Cummings; Jessica Milman; Kathryn Tucker; Lorraine Soisson; V. Ann Stewart; Jeffrey A. Lyon; Evelina Angov; Amanda Leach; Joe Cohen; Kent E. Kester; Christian F. Ockenhouse; Carolyn A. Holland; Carter Diggs; Janet Wittes; D. Gray Heppner


Vaccine | 2005

Safety and immunogenicty of RTS,S/AS02A candidate malaria vaccine in Gambian children.

Kalifa Bojang; Folasade Olodude; Margaret Pinder; Opokua Ofori-Anyinam; Laurence Vigneron; Steve Fitzpatrick; Fanta Njie; Adams Kassanga; Amanda Leach; Jessica Milman; Regina Rabinovich; Keith P. W. J. McAdam; Kent E. Kester; D. Gray Heppner; Joe Cohen; Nadia Tornieporth; Paul Milligan


The Lancet | 2004

Efficacy of the RTS,S/AS02A vaccine against infection and disease in young African children: randomised controlled trial

Pino Alonso; Jahit Sacarlal; John J. Aponte; Amanda J. Leach; Eusebio Macete; Jessica Milman; Inacio Mandomando; Bart Spiessens; Caterina Guinovart; Mateu Espasa


Trials | 2007

Evaluation of two formulations of adjuvanted RTS, S malaria vaccine in children aged 3 to 5 years living in a malaria-endemic region of Mozambique: a Phase I/IIb randomized double-blind bridging trial.

Eusebio Macete; Jahit Sacarlal; John J. Aponte; Amanda Leach; Margarita M. Navia; Jessica Milman; Caterina Guinovart; Inacio Mandomando; Yolanda López-Púa; Marc Lievens; Alex Owusu-Ofori; Marie-Claude Dubois; Conor P. Cahill; Marguerite Koutsoukos; Marla Sillman; Ricardo Thompson; Filip Dubovsky; W. Ripley Ballou; Joe Cohen; Pedro L. Alonso

Collaboration


Dive into the Jessica Milman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jahit Sacarlal

Eduardo Mondlane University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Gray Heppner

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Ricardo Thompson

Eduardo Mondlane University

View shared research outputs
Researchain Logo
Decentralizing Knowledge