Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica O. Winter is active.

Publication


Featured researches published by Jessica O. Winter.


Journal of Biomaterials Science-polymer Edition | 2007

Retinal prostheses: current challenges and future outlook

Jessica O. Winter; S. F. Cogan; Joseph F. Rizzo

Blindness from retinal diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), usually causes a significant decline in quality of life for affected patients. Currently there is no cure for these conditions. However, over the last decade, several groups have been developing retinal prostheses which hopefully will provide some degree of improved visual function to these patients. Several such devices are now in clinical trials. Unfortunately, the possibility of electrode or tissue damage limits excitation schemes to those that may be employed with electrodes that have relatively low charge densities. Further, the excitation thresholds that have been required to achieve vision to date, in general, are relatively high. This may result in part from poor apposition between neurons and the stimulating electrodes and is confounded by the effects of the photoreceptor loss, which initiates other pathology in the surviving retinal tissue. The combination of these and other factors imposes a restriction on the pixel density that can be used for devices that actively deliver electrical stimulation to the retina. The resultant use of devices with relatively low pixel densities presumably will limit the degree of visual resolution that can be obtained with these devices. Further increases in pixel density, and therefore increased visual acuity, will necessitate either improved electrode-tissue biocompatibility or lower stimulation thresholds. To meet this challenge, innovations in materials and devices have been proposed. Here, we review the types of retinal prostheses investigated, the extent of their current biocompatibility and future improvements designed to surmount these limitations.


Frontiers in Neuroengineering | 2009

Adhesion Molecule-Modified Biomaterials for Neural Tissue Engineering

Shreyas S. Rao; Jessica O. Winter

Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored.


Journal of Controlled Release | 2012

Hydrogel–electrospun fiber composite materials for hydrophilic protein release

Ning Han; Jed Johnson; John J. Lannutti; Jessica O. Winter

Although hydrogels are widely used in controlled-release systems, obtaining extended, uniform drug release with little initial burst has been challenging. However, recently researchers have shown that combining hydrogels with another drug delivery material can dramatically improve release kinetics. Here we describe a novel hydrogel-based composite material that exhibits stable, near-linear, sustained release of a model hydrophilic protein (e.g., bovine albumin serum, BSA) for over two months with a significant reduction in initial burst release (7% vs. 20%). The composite is comprised of poly(ε-caprolactone) (PCL) electrospun fiber mats coupled with poly(ethylene glycol)-poly(ε-caprolactone) diacrylate (PEGPCL) hydrogels through photo-polymerization. It is believed that the additional diffusion barrier provided by hydrophobic electrospun fiber mats reduces hydrogel swelling and water penetration rates and increases the diffusion path length, resulting in delayed, more uniform drug release. Further, released proteins remain bioactive as demonstrated by PC12 cell neurite extension in response to released nerve growth factor (NGF). The use of electrospun fiber mats to modulate hydrogel drug release provides a new method to control release kinetics of hydrophilic proteins, reducing burst release and extending the release duration.


ACS Applied Materials & Interfaces | 2013

Glioblastoma Behaviors in Three-Dimensional Collagen-Hyaluronan Composite Hydrogels

Shreyas S. Rao; Jessica DeJesus; Aaron R. Short; Jose Otero; Atom Sarkar; Jessica O. Winter

Glioblastoma multiforme (GBM) tumors, which arise from glia in the central nervous system (CNS), are one of the most deadly forms of human cancer with a median survival time of ∼1 year. Their high infiltrative capacity makes them extremely difficult to treat, and even with aggressive multimodal clinical therapies, outcomes are dismal. To improve understanding of cell migration in these tumors, three-dimensional (3D) multicomponent composite hydrogels consisting of collagen and hyaluronic acid, or hyaluronan (HA), were developed. Collagen is a component of blood vessels known to be associated with GBM migration; whereas, HA is one of the major components of the native brain extracellular matrix (ECM). We characterized hydrogel microstructural features and utilized these materials to investigate patient tumor-derived, single cell morphology, spreading, and migration in 3D culture. GBM morphology was influenced by collagen type with cells adopting a rounded morphology in collagen-IV versus a spindle-shaped morphology in collagen-I/III. GBM spreading and migration were inversely dependent on HA concentration; with higher concentrations promoting little or no migration. Further, noncancerous astrocytes primarily displayed rounded morphologies at lower concentrations of HA; in contrast to the spindle-shaped (spread) morphologies of GBMs. These results suggest that GBM behaviors are sensitive to ECM mimetic materials in 3D and that these composite hydrogels could be used to develop 3D brain mimetic models for studying migration processes.


Talanta | 2005

Challenges in quantum dot-neuron active interfacing

Natalia Gomez; Jessica O. Winter; Felice Shieh; Aaron E. Saunders; Brian A. Korgel; Christine E. Schmidt

Semiconductor nanocrystal quantum dots (qdots) are now being explored in applications requiring active cellular interfaces, such as biosensing and therapeutics in which information is passed from the qdot to the biological system, or vice versa, to perform a function. These applications may require surface coating chemistry that is different from what is commonly employed for passive interface applications like labeling (i.e., thick polymer coatings such as poly(ethylene glycol) (PEG)), in which the only concern is nonspecific sticking to cells and biocompatibility. The thick insulating coatings that are generally needed for labeling are generally not suitable for active qdot-cell interface applications. There is currently little data regarding the interactions between viable cells and qdots under physiological conditions. Our initial investigations using mercaptoacetic acid-coated CdS and CdTe qdots as a simple model to interface with neuron cell surface receptors under physiological conditions uncovered two significant technological hurdles: nonspecific binding and endocytosis. Nonspecific binding can be extensive and in general there appears to be greater nonspecific binding for larger particle sizes, but this also depends sensitively on the particle surface characteristics and the type of neuron, possibly indicating a detailed relationship between particle-cell affinity and cell membrane chemistry. More importantly, qdot endocytosis occurs rapidly at physiological temperature for the different nerve cell types studied, within the first five minutes of exposure to both CdS and CdTe qdots, regardless of whether the molecular coatings specifically recognize cell surface receptors or not. As a consequence, new strategies for tagging cell surface recognition groups for long-term active interfacing with cells under physiological conditions are needed, which requires more sophisticated ligands than MAA but also the absence of thick insulating coatings.


PLOS ONE | 2012

Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

Shreyas S. Rao; Sarah A. Bentil; Jessica DeJesus; John Larison; Alex Hissong; Rebecca B. Dupaix; Atom Sarkar; Jessica O. Winter

Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.


Journal of Biomaterials Science-polymer Edition | 2011

Polylysine-Modified PEG-Based Hydrogels to Enhance the Neuro–Electrode Interface

Shreyas S. Rao; Ning Han; Jessica O. Winter

Neural prostheses are a promising technology in the treatment of lost neural function. However, poor biocompatibility of these devices inhibits the formation of a robust neuro–electrode interface. Several factors including mechanical mismatch between the device and tissue, inflammation at the implantation site, and possible electrical damage contribute to this response. Many researchers are investigating polymeric brain mimetic coatings as a means to improve integration with nervous tissue. Specifically, hydrogels, constructs also employed in tissue engineering, have been explored because of their structural and mechanical similarity to native tissue. However, many hydrogel materials (e.g., poly(ethylene glycol) (PEG)) do not support cell adhesion. In this work, we report a technique to enhance the interface between polymeric brain mimetic coatings and neural tissue using adhesion molecules. In particular, polylysine-modified PEG-based hydrogels were synthesized, characterized and shown to promote neural adhesion using a PC12 cell line. In addition, we examined adhesion behavior of a PEG-co-polymer and found that these materials adhere to electrodes for at least 4 weeks. These results suggest that polylysine–PEG hydrogel biomaterials are biocompatible and can enhance stability of chronic neural interfaces.


BMC Cancer | 2014

Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber ‘cell highways’

Mark Tyler Nelson; Aaron R. Short; Sara Cole; Amy C. Gross; Jessica O. Winter; Timothy D. Eubank; John J. Lannutti

BackgroundAggressive metastatic breast cancer cells seemingly evade surgical resection and current therapies, leading to colonization in distant organs and tissues and poor patient prognosis. Therefore, high-throughput in vitro tools allowing rapid, accurate, and novel anti-metastatic drug screening are grossly overdue. Conversely, aligned nanofiber constitutes a prominent component of the late-stage breast tumor margin extracellular matrix. This parallel suggests that the use of a synthetic ECM in the form of a nanoscale model could provide a convenient means of testing the migration potentials of cancer cells to achieve a long-term goal of providing clinicians an in vitro platform technology to test the efficacy of novel experimental anti-metastatic compounds.MethodsElectrospinning produces highly aligned, cell-adhesive nanofiber matrices by applying a strong electric field to a polymer-containing solution. The resulting fibrous microstructure and morphology closely resembles in vivo tumor microenvironments suggesting their use in analysis of migratory potentials of metastatic cancer cells. Additionally, a novel interface with a gel-based delivery system creates CXCL12 chemotactic gradients to enhance CXCR4-expressing cell migration.ResultsCellular dispersions of MCF-10A normal mammary epithelial cells or human breast cancer cells (MCF-7 and MDA-MB-231) seeded on randomly-oriented nanofiber exhibited no significant differences in total or net distance traveled as a result of the underlying topography. Cells traveled ~2-5 fold greater distances on aligned fiber. Highly-sensitive MDA-MB-231 cells displayed an 82% increase in net distance traversed in the presence of a CXCL12 gradient. In contrast, MCF-7 cells exhibited only 31% increase and MCF-10A cells showed no statistical difference versus control or vehicle conditions. MCF-10A cells displayed little sensitivity to CXCL12 gradients, while MCF-7 cells displayed early sensitivity when CXCL12 concentrations were higher. MDA-MB-231 cells displayed low relative expression levels of CXCR4, but high sensitivity resulting in 55-fold increase at late time points due to CXCL12 gradient dissipation.ConclusionsThis model could create clinical impact as an in vitro diagnostic tool for rapid assessment of tumor needle biopsies to confirm metastatic tumors, their invasiveness, and allow high-throughput drug screening providing rapid development of personalized therapies.


Journal of Functional Biomaterials | 2012

Cell Attachment to Hydrogel-Electrospun Fiber Mat Composite Materials

Ning Han; Jed Johnson; Patrick A. Bradley; Kunal S. Parikh; John J. Lannutti; Jessica O. Winter

Hydrogels, electrospun fiber mats (EFMs), and their composites have been extensively studied for tissue engineering because of their physical and chemical similarity to native biological systems. However, while chemically similar, hydrogels and electrospun fiber mats display very different topographical features. Here, we examine the influence of surface topography and composition of hydrogels, EFMs, and hydrogel-EFM composites on cell behavior. Materials studied were composed of synthetic poly(ethylene glycol) (PEG) and poly(ethylene glycol)-poly(ε-caprolactone) (PEGPCL) hydrogels and electrospun poly(caprolactone) (PCL) and core/shell PCL/PEGPCL constituent materials. The number of adherent cells and cell circularity were most strongly influenced by the fibrous nature of materials (e.g., topography), whereas cell spreading was more strongly influenced by material composition (e.g., chemistry). These results suggest that cell attachment and proliferation to hydrogel-EFM composites can be tuned by varying these properties to provide important insights for the future design of such composite materials.


Frontiers in Neuroengineering | 2011

Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses

Ning Han; Shreyas S. Rao; Jed Johnson; Kunal S. Parikh; Patrick A. Bradley; John J. Lannutti; Jessica O. Winter

Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron–prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel–electrospun fiber mat (EFM) composite coatings. In particular, poly(ethylene glycol)-poly(ε-caprolactone) (PEGPCL) hydrogel–poly(ε-caprolactone) EFM composites were applied as coatings for multielectrode arrays. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF), was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel–EFM composite materials can be applied to neural prostheses to improve neuron–electrode proximity and enhance long-term device performance and function.

Collaboration


Dive into the Jessica O. Winter's collaboration.

Top Co-Authors

Avatar

Gang Ruan

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge