Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica R. Lucas is active.

Publication


Featured researches published by Jessica R. Lucas.


The Plant Cell | 2005

The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage.

Lien B. Lai; Jeanette A. Nadeau; Jessica R. Lucas; EunKyoung Lee; Tsuyoshi Nakagawa; Liming Zhao; Matt J. Geisler; Fred D. Sack

The two guard cells of a stoma are produced by a single symmetric division just before terminal differentiation. Recessive mutations in the FOUR LIPS (FLP) gene abnormally induce at least four guard cells in contact with one another. These pattern defects result from a persistence of precursor cell identity that leads to extra symmetric divisions at the end of the cell lineage. FLP is likely to be required for the correct timing of the transition from cell cycling to terminal differentiation. FLP encodes a two-repeat (R2R3) MYB protein whose expression accumulates just before the symmetric division. A paralogous gene, MYB88, overlaps with FLP function in generating normal stomatal patterning. Plants homozygous for mutations in both genes exhibit more severe defects than flp alone, and transformation of flp plants with a genomic MYB88 construct restores a wild-type phenotype. Both genes compose a distinct and relatively basal clade of atypical R2R3 MYB proteins that possess an unusual pattern of amino acid substitutions in their putative DNA binding domains. Our results suggest that two related transcription factors jointly restrict divisions late in the Arabidopsis thaliana stomatal cell lineage.


The Plant Cell | 2010

Regulation of Cell Proliferation in the Stomatal Lineage by the Arabidopsis MYB FOUR LIPS via Direct Targeting of Core Cell Cycle Genes

Zidian Xie; EunKyoung Lee; Jessica R. Lucas; Kengo Morohashi; Dongmei Li; James Augustus Henry Murray; Fred D. Sack; Erich Grotewold

The MYB protein FOUR LIPS (FLP) promotes Arabidopsis stomatal patterning by suppressing cell division before differentiation. FLP direct targets were found to be enriched in cell cycle genes that function in both S-G1 and G2-M phase, indicating that this transcription factor acts as a developmental integrator. Stomata, which are epidermal pores surrounded by two guard cells, develop from a specialized stem cell lineage and function in shoot gas exchange. The Arabidopsis thaliana FOUR LIPS (FLP) and MYB88 genes encode closely related and atypical two-MYB-repeat proteins, which when mutated result in excess divisions and abnormal groups of stomata in contact. Consistent with a role in transcription, we show here that FLP and MYB88 are nuclear proteins with DNA binding preferences distinct from other known MYBs. To identify possible FLP/MYB88 transcriptional targets, we used chromatin immunoprecitation (ChIP) followed by hybridization to Arabidopsis whole genome tiling arrays. These ChIP-chip data indicate that FLP/MYB88 target the upstream regions especially of cell cycle genes, including cyclins, cyclin-dependent kinases (CDKs), and components of the prereplication complex. In particular, we show that FLP represses the expression of the mitosis-inducing factor CDKB1;1, which, along with CDKB1;2, is specifically required both for the last division in the stomatal pathway and for cell overproliferation in flp mutants. We propose that FLP and MYB88 together integrate patterning with the control of cell cycle progression and terminal differentiation through multiple and direct cell cycle targets. FLP recognizes a distinct cis-regulatory element that overlaps with that of the cell cycle activator E2F-DP in the CDKB1;1 promoter, suggesting that these MYBs may also modulate E2F-DP pathways.


Planta | 2009

TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems

Neela Bhave; Kira M. Veley; Jeanette A. Nadeau; Jessica R. Lucas; Sanjay L. Bhave; Fred D. Sack

Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.


The Plant Cell | 2013

Progressive Transverse Microtubule Array Organization in Hormone-Induced Arabidopsis Hypocotyl Cells

Laura Vineyard; Andrew Elliott; Sonia Dhingra; Jessica R. Lucas; Sidney L. Shaw

The reorganization of the plant cortical microtubule cytoskeleton into a transverse coalignment was analyzed quantitatively in living cells using hormone induction. Transverse patterning initiates from the cell’s midzone, progressing bidirectionally toward the apex and base of the cell. The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces.


Planta | 2005

Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight

Volker D. Kern; Jochen Schwuchow; David W. Reed; Jeanette A. Nadeau; Jessica R. Lucas; Alexander Skripnikov; Fred D. Sack

In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.


Plant Journal | 2014

Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes

EunKyoung Lee; Jessica R. Lucas; Justin Goodrich; Fred D. Sack

Arabidopsis guard cell (GC) fate is conferred via a transient pulse of expression of FAMA that encodes a bHLH transcription factor. Stomata often function for years, suggesting that the FAMA expression window stabilizes long-term GC identity or that additional factors operate. Transgenic lines harboring a copy of a FAMA transgene were found to induce the fate resetting of mature GCs to that of lineage-specific stem cells causing new stomata to arise within shells of the old, a Stoma-in-Stoma (SIS) phenotype. These lines disrupt the normal trimethylation on lysine 27 of histone3 (H3K27me3) on stomatal stem cell genes, a phenotype rescued by constitutive expression of the Polycomb Group (PcG) gene CURLY LEAF. Thus the stability of stomatal fate is enforced by a PcG-mediated reduction in the transcriptional accessibility of stem cell genes and by the endogenous FAMA gene itself. Moreover, a transgenic FOUR LIPS gene, which encodes a MYB protein that is not required for GC fate, also induces a SIS phenotype and disrupts H3K27 trimethylation. Thus FLP might indirectly enforce GC fate as well.


Plant Journal | 2014

Deep functional redundancy between FAMA and FOUR LIPS in stomatal development.

EunKyoung Lee; Jessica R. Lucas; Fred D. Sack

Functional redundancy arises between gene paralogs as well as non-homologous genes that play a common role at a shared node. The bHLH transcription factor FAMA, along with the paralogous MYB genes, FOUR LIPS (FLP) and MYB88 all ensure that Arabidopsis stomata contain just two guard cells (GCs) by enforcing a single symmetric precursor cell division before stomatal maturity. Consistent with this function, FLP and FAMA exhibit the same expression pattern in which both translational GFP fusions emit fluorescence just before and after symmetric division; however, FAMA but not FLP is required to confer GC fate. Strikingly, swapping the genes and promoters of the FLP and FAMA genes results in the reciprocal complementation of respective loss-of-function mutants. Thus, an FLP transgene can restore GC fate to a fama mutant background. FAMA, FLP and the FLP paralog MYB88 were previously shown to influence higher order functions in stomatal development, including maintaining and stabilizing stomatal fate. Here we show that these overlapping functions are likely to also involve interactions between FLP and FAMA with the RETINOBLASTOMA-RELATED (RBR) protein.


Plant Journal | 2012

Polar development of preprophase bands and cell plates in the Arabidopsis leaf epidermis

Jessica R. Lucas; Fred D. Sack

Preprophase bands are belts of cortical microtubules that appear at the end of interphase and predict where cell plates will fuse with parental walls during division. Phragmoplasts are microtubule-rich arrays that orchestrate the growth and guidance of cell plates during cytokinesis. Descriptions of the development of these arrays often assume non-polar formation, with preprophase bands developing more or less simultaneously around the cell circumference. Phragmoplasts are often described as initiating at the cell center and then expanding evenly outwards until fusion with parent cell walls. We analyzed the spatio-temporal development of both arrays because initial observations of array growth in the Arabidopsis leaf epidermis revealed directional variability. Almost all preprophase bands formed in a polar fashion, with initiation and maturation occurring first in the cell cortex near the inside of the leaf, and later in the outer cell cortex. A similar polarity developed in phragmoplasts and cell plates, raising the possibility that polarized division is common in plants. Together, these findings identify additional polar features of the epidermis, and thereby provide a visually accessible system for identifying new proteins and subcellular components involved in the development of cell division and the previously formed division site.


Plant Journal | 2015

The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis.

Sandra Keerthisinghe; Jeannette A. Nadeau; Jessica R. Lucas; Tsuyoshi Nakagawa; Fred D. Sack

Stomata display a mirror-like symmetry that is adaptive for shoot/atmosphere gas exchange. This symmetry includes the facing guard cells around a lens-shaped and bilaterally symmetric pore, as well as radially arranged microtubule arrays that primarily originate at the pore and then grow outwards. Mutations in MUSTACHES (MUS), which encodes a leucine-rich repeat receptor-like kinase, disrupt this symmetry, resulting in defects ranging from skewed pores and abnormally focused and depolarized radial microtubule arrays, to paired guard cells that face away from each other, or a severe loss of stomatal shape. Translational MUSproMUS:tripleGFP fusions are expressed in cell plates in most cells types in roots and shoots, and cytokinesis and cell plates are mostly normal in mus mutants. However, in guard mother cells, which divide and then form stomata, MUS expression is notably absent from new cell plates, and instead is peripherally located. These results are consistent with a role for MUS in enforcing wall building and cytoskeletal polarity at the centre of the developing stoma via signalling from the vicinity of the guard cell membrane.


Methods in Cell Biology | 2013

Live-cell imaging of microtubules and microtubule-associated proteins in Arabidopsis thaliana.

Jessica R. Lucas

Microtubules and microtubule-associated proteins (MAPs) play fundamental roles in plant growth and morphogenesis. The ability to observe microtubules and MAPs in living cells using fluorescent protein fusions has propelled plant scientists forward and given them the opportunity to answer longstanding biological questions. In combination with the genetic resources available in the model plant Arabidopsis thaliana, our mechanistic understanding of how the microtubule cytoskeleton affects plant life has dramatically increased. It is a simple process to construct transgenic A. thaliana plants that express fluorescent protein fusions by using the disarmed plant pathogen Agrobacterium tumefaciens. Several screening steps are necessary to ensure that the fusion protein accurately mimics the native protein because transgenes are inserted randomly into the A. thaliana genome. To image the fluorescent proteins in planta, confocal microscopy is used to alleviate issues caused by specimen thickness and autofluorescence.

Collaboration


Dive into the Jessica R. Lucas's collaboration.

Top Co-Authors

Avatar

Fred D. Sack

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

EunKyoung Lee

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Keerthisinghe

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge