Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica R. Terrill is active.

Publication


Featured researches published by Jessica R. Terrill.


FEBS Journal | 2013

Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies

Jessica R. Terrill; Hannah G. Radley-Crabb; Tomohito Iwasaki; Frances A. Lemckert; Peter G. Arthur; Miranda D. Grounds

The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin‐deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin‐deficient mdx mice.


Neuromuscular Disorders | 2012

N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis

Jessica R. Terrill; Hannah G. Radley-Crabb; Miranda D. Grounds; Peter G. Arthur

Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications.


The Journal of Physiology | 2016

Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy

Jessica R. Terrill; Gavin J. Pinniger; Jamie A. Graves; Miranda D. Grounds; Peter G. Arthur

Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N‐acetyl cysteine (NAC) and l‐2‐oxothiazolidine‐4‐carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD.


The International Journal of Biochemistry & Cell Biology | 2015

Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy

Jessica R. Terrill; Miranda D. Grounds; Peter G. Arthur

The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.


Free Radical Research | 2011

Screening for increased protein thiol oxidation in oxidatively stressed muscle tissue.

Ahmed F. El-Shafey; Alexander E. Armstrong; Jessica R. Terrill; Miranda D. Grounds; Peter G. Arthur

Abstract Elevated oxidative stress can alter the function of proteins through the reversible oxidation of the thiol groups of key cysteine residues. This study evaluated a method to scan for reversible protein thiol oxidation in tissue by measuring reduced and oxidized protein thiols. It assessed the responsiveness of protein thiols to oxidative stress in vivo using a dystrophic (mdx) mouse model and compared the changes to commonly used oxidative biomarkers. In mdx mice, protein thiol oxidation was significantly elevated in the diaphragm, gastrocnemius and quadriceps muscles. Neither malondialdehyde nor degree of glutathione oxidation was elevated in mdx muscles. Protein carbonyl content was elevated, but changes in protein carbonyl did not reflect changes in protein thiol oxidation. Collectively, these data indicate that where there is an interest in protein thiol oxidation as a mechanism to cause or exacerbate pathology, the direct measurement of protein thiols in tissue would be the most appropriate screening tool.


American Journal of Pathology | 2014

Lipid accumulation in dysferlin-deficient muscles.

Miranda D. Grounds; Jessica R. Terrill; Hannah G. Radley-Crabb; Terry Robertson; John M. Papadimitriou; Simone Spuler; Tea Shavlakadze

Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.


The International Journal of Biochemistry & Cell Biology | 2013

Treatment with the cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice

Jessica R. Terrill; Amber Boyatzis; Miranda D. Grounds; Peter G. Arthur

Oxidative stress has been implicated in the pathology of the lethal skeletal muscle disease Duchenne muscular dystrophy (DMD), and various antioxidants have been investigated as a potential therapy. Recently, treatment of the mdx mouse model for DMD with the antioxidant and cysteine and glutathione (GSH) precursor n-acetylcysteine (NAC) was shown to decrease protein thiol oxidation and improve muscle pathology and ex vivo muscle strength. This study further investigates the mechanism for the benefits of NAC on dystrophic muscle by administering l-2-oxothiazolidine-4-carboxylate (OTC) which also upregulates intracellular cysteine and GSH, but does not directly function as an antioxidant. We observed that OTC, like NAC, decreases protein thiol oxidation, decreases pathology and increases strength, suggesting that the both NAC and OTC function via increasing cysteine and GSH content of dystrophic muscle. We demonstrate that mdx muscle is not deficient in either cysteine or GSH and that these are not increased by OTC treatment. However, we show that dystrophic muscle of 12 week old mdx mice is deficient in taurine, a by-product of disposal of excess cysteine, a deficiency that is ameliorated by OTC treatment. These data suggest that in dystrophic muscles, apart from the strong association of increased oxidative stress and protein thiol oxidation with dystropathology, another major issue is an insufficiency in taurine that can be corrected by increasing the availability of cysteine. This study provides new insight into the molecular mechanism underlying the benefits of NAC in muscular dystrophy and supports the use of OTC as an alternative drug for potential clinical applications to DMD.


Biomedical Optics Express | 2014

Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

Lixin Chin; Brendan F. Kennedy; Kelsey M. Kennedy; Philip Wijesinghe; Gavin J. Pinniger; Jessica R. Terrill; Robert A. McLaughlin; David D. Sampson

In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies.


PLOS Currents | 2016

Increased taurine in pre-weaned juvenile mdx mice greatly reduces the acute onset of myofibre necrosis and dystropathology and prevents inflammation

Jessica R. Terrill; Miranda D. Grounds; Peter G. Arthur

Background: The mdx mouse model for the fatal muscle wasting disease Duchenne Muscular Dystrophy (DMD) shows a very mild pathology once growth has ceased, with low levels of myofibre necrosis in adults. However, from about 3 weeks of post-natal age, muscles of juvenile mdx mice undergo an acute bout of severe necrosis and inflammation: this subsequently decreases and stabilises to lower adult levels by about 6 weeks of age. Prior to the onset of this severe dystropathology, we have shown that mdx mice are deficient in the amino acid taurine (potentially due to weaning), and we propose that this exacerbates myofibre necrosis and inflammation in juvenile mdx mice. Objectives: The purpose of this study was to increase taurine availability to pre-weaned juvenile mdx mice (from 14 days of age), to evaluate the impact on levels of myofibre necrosis and inflammation (at 22 days) during the acute period of severe dystropathology. Results: Untreated 22 day old mdx muscle was not deficient in taurine, with similar levels to normal C57 control muscle. However taurine treatment, which increased the taurine content of young dystrophic muscle (by 40%), greatly reduced myofibre necrosis (by 75%) and prevented significant increases in 3 markers of inflammation. Conclusion: Taurine was very effective at preventing the acute phase of muscle damage that normally results in myofibre necrosis and inflammation in juvenile mdx mice, supporting continued research into the use of taurine as a therapeutic intervention for protecting growing muscles of young DMD boys


Free Radical Biology and Medicine | 2013

Visualizing and quantifying oxidized protein thiols in tissue sections: A comparison of dystrophic mdx and normal skeletal mouse muscles

Tomohito Iwasaki; Jessica R. Terrill; Tea Shavlakadze; Miranda D. Grounds; Peter G. Arthur

Reactive oxygen species (ROS) are not only a cause of oxidative stress in a range of disease conditions but are also important regulators of physiological pathways in vivo. One mechanism whereby ROS can regulate cell function is by modification of proteins through the reversible oxidation of their thiol groups. An experimental challenge has been the relative lack of techniques to probe the biological significance of protein thiol oxidation in complex multicellular tissues and organs. We have developed a sensitive and quantitative fluorescence labeling technique to detect and localize protein thiol oxidation in histological tissue sections. In our technique, reduced and oxidized protein thiols are visualized and quantified on two consecutive tissue sections and the extent of protein thiol oxidation is expressed as a percentage of total protein thiols (reduced plus oxidized). We tested the application of this new technique using muscles of dystrophic (mdx) and wild-type C57Bl/10Scsn (C57) mice. In mdx myofibers, protein thiols were consistently more oxidized (19 ± 3%) compared with healthy myofibers (10 ± 1%) in C57 mice. A striking observation was the localization of intensive protein thiol oxidation (70 ± 9%) within myofibers associated with necrotic damage. Oxidative stress is an area of active investigation in many fields of research, and this technique provides a useful tool for locating and further understanding protein thiol oxidation in normal, damaged, and diseased tissues.

Collaboration


Dive into the Jessica R. Terrill's collaboration.

Top Co-Authors

Avatar

Miranda D. Grounds

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peter G. Arthur

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Gavin J. Pinniger

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Tea Shavlakadze

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Hannah G. Radley-Crabb

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Zoe White

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Robert B. White

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Alan R. Harvey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Amber Boyatzis

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David D. Sampson

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge