Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Schneck is active.

Publication


Featured researches published by Jessica Schneck.


Cancer and Metabolism | 2013

Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells

Julia Billiard; Jennifer B. Dennison; Jacques Briand; Roland S. Annan; Deping Chai; Mariela Colón; Christopher S Dodson; Seth Gilbert; Joel Greshock; Junping Jing; Hong Lu; Jeanelle McSurdy-Freed; Lisa A. Orband-Miller; Gordon B. Mills; Chad Quinn; Jessica Schneck; Gilbert F. Scott; Anthony N. Shaw; Gregory M. Waitt; Richard Wooster; Kevin J. Duffy

BackgroundMost normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA.MethodsHigh throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment.Results3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu398 cells.ConclusionsRapid chemical inhibition of LDHA by these quinoline 3-sulfonamids led to profound metabolic alterations and impaired cell survival in carcinoma cells making it a compelling strategy for treating solid tumors that rely on aerobic glycolysis for survival.


Journal of Biomolecular Screening | 2007

A Simple Assay for Detection of Small-Molecule Redox Activity

Leng A. Lor; Jessica Schneck; Dean E. McNulty; Elsie Diaz; Martin Brandt; Sara H. Thrall; Benjamin Schwartz

In addition to selecting molecules of pharmacological interest, high-throughput screening campaigns often generate hits of undesirable mechanism, which cannot be exploited for drug discovery as they lead to obvious problems of specificity and developability. Examples of undesirable mechanisms are target alkylation/acylation and compound aggregation. Both types of “promiscuous” mechanisms have been described in the literature, as have methods for their detection. In addition to these mechanisms, compounds can also inhibit by oxidizing susceptible enzyme targets, such as metalloenzymes and cysteine-using enzymes. However, this redox phenomenon has been documented infrequently, and an easy method for detecting this behavior is missing. In this article, the authors describe direct proof of small-molecule oxidation of a cysteine protease by liquid chromatography/tandem mass spectrometry, develop a simple assay to predict this oxidizing behavior by compounds, and show the utility of this assay by demonstrating its ability to distinguish nuisance redox compounds from well-behaved inhibitors in 3 historical GlaxoSmithKline drug discovery efforts. (Journal of Biomolecular Screening 2007:881-890)


Bioorganic & Medicinal Chemistry | 2009

Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode

Michael Kranz; Michael D. Wall; Brian Evans; Afjal H. Miah; Stuart P. Ballantine; Chris J. Delves; Brian Dombroski; Jeffrey W. Gross; Jessica Schneck; James P. Villa; Margarete Neu; Don O. Somers

A PDE4B over 4D-selective inhibitor programme was initiated to capitalise on the recently discovered predominance of the PDE4B subtype in inflammatory cell regulation. The SAR of a tetrahydrobenzothiophene (THBT) series did not agree with either of two proposed docking modes in the 4B binding site. A subsequent X-ray co-crystal structure determination revealed that the THBT ligand displaces the Gln-443 residue, invariably ligand-anchoring in previous PDE4 co-crystal structures, and even shifts helix-15 by 1-2A. For the first time, several residues of the C-terminus previously proposed to be involved in subtype selectivity are resolved and three of them extend into the ligand binding site potentially allowing for selective drug design.


Biochemistry | 2008

Chemical Mechanism of a Cysteine Protease, Cathepsin C, As Revealed by Integration of both Steady-State and Pre-Steady-State Solvent Kinetic Isotope Effects

Jessica Schneck; James P. Villa; Patrick McDevitt; Michael S. McQueney; Sara H. Thrall; Thomas D. Meek

Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine proteases chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.


Journal of Pharmacology and Experimental Therapeutics | 2014

GSK356278, a Potent, Selective, Brain-Penetrant Phosphodiesterase 4 Inhibitor That Demonstrates Anxiolytic and Cognition-Enhancing Effects without Inducing Side Effects in Preclinical Species

A. Richard Rutter; Alessandro Poffe; Palmina Cavallini; T. Gregg Davis; Jessica Schneck; Michele Negri; Elena Vicentini; Dino Montanari; Roberto Arban; Frank Gray; Ceri H. Davies; Paul Wren

Small molecule phosphodiesterase (PDE) 4 inhibitors have long been known to show therapeutic benefit in various preclinical models of psychiatric and neurologic diseases because of their ability to elevate cAMP in various cell types of the central nervous system. Despite the registration of the first PDE4 inhibitor, roflumilast, for the treatment of chronic obstructive pulmonary disease, the therapeutic potential of PDE4 inhibitors in neurologic diseases has never been fulfilled in the clinic due to severe dose-limiting side effects such as nausea and vomiting. In this study, we describe the detailed pharmacological characterization of GSK356278 [5-(5-((2,4-dimethylthiazol-5-yl)methyl)-1,3,4-oxadiazol-2-yl)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine], a potent, selective, and brain-penetrant PDE4 inhibitor that shows a superior therapeutic index to both rolipram and roflumilast in various preclinical species and has potential for further development in the clinic for the treatment of psychiatric and neurologic diseases. GSK356278 inhibited PDE4B enzyme activity with a pIC50 of 8.8 and bound to the high-affinity rolipram binding site with a pIC50 of 8.6. In preclinical models, the therapeutic index as defined in a rodent lung inflammation model versus rat pica feeding was >150 compared with 0.5 and 6.4 for rolipram and roflumilast, respectively. In a model of anxiety in common marmosets, the therapeutic index for GSK356278 was >10 versus <1 for rolipram. We also demonstrate that GSK356278 enhances performance in a model of executive function in cynomolgus macaques with no adverse effects, a therapeutic profile that supports further evaluation of GSK356278 in a clinical setting.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36

Myles B. Poulin; Jessica Schneck; Rosalie Matico; Patrick McDevitt; Michael Huddleston; Wangfang Hou; Neil W. Johnson; Sara H. Thrall; Thomas D. Meek; Vern L. Schramm

Significance Epigenetic control by methylation of histones is essential in development. Loss of regulation of methylation pathways is involved in developmental disorders and oncogenesis. Despite interest in NSD2, there have been no selective inhibitors reported. Analogs designed to mimic the NSD2 transition state structure are potential enzyme inhibitors. A combination of experimental kinetic isotope effects and quantum chemistry was used to define the subangstrom details of reaction chemistry at the transition state of NSD2. Electrostatic potential maps of reactants and transition states provide a high-resolution map of reaction chemistry and a blueprint for design of transition state analogs for this mechanism of epigenetic regulation. Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf–Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-14C and 36S and secondary Me-3H3, Me-2H3, 5′-14C, and 5′-3H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.


Biochemistry | 2010

Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

Jessica Schneck; Jacques Briand; Stephanie Chen; Ruth Lehr; Patrick McDevitt; Baoguang Zhao; Angela Smallwood; Nestor O. Concha; Khyati Oza; Robert B. Kirkpatrick; Kang Yan; James P. Villa; Thomas D. Meek; Sara H. Thrall

Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH(2), FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k(cat) (0.052 +/- 0.001 s(-1)), K(MgATP) (1.2 +/- 0.1 microM), K(iMgATP) (1.3 +/- 0.2 microM), K(FAK-tide) (5.6 +/- 0.4 microM), and K(iFAK-tide) (6.1 +/- 1.1 microM) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the betagamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-(18)O(4)]ATP in the presence of 1 mM [gamma-(18)O(4)]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k(x)/k(cat) = 0.14 +/- 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k(cat)/K(FAK-tide), while k(cat) and k(cat)/K(MgATP) were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k(cat)/K(m) for MgATP but not on k(cat)/K(m) for FAK-tide. From the positional isotope exchange, viscosity, and structural data it may be concluded that enzyme turnover (k(cat)) is rate-limited by both reversible phosphoryl group transfer (k(forward) approximately 0.2 s(-1) and k(reverse) approximately 0.04 s(-1)) and a slow step (k(conf) approximately 0.1 s(-1)) which is probably the opening of the activation loop after phosphoryl group transfer but preceding product release.


ACS Medicinal Chemistry Letters | 2011

Discovery of novel cyanamide-based inhibitors of cathepsin C.

Dramane I. Laine; Michael R. Palovich; Brent W. Mccleland; Emilie Petitjean; Isabelle Delhom; Haibo Xie; Jianghe Deng; Guoliang Lin; Roderick S. Davis; Anais Jolit; Neysa Nevins; Baoguang Zhao; Jim Villa; Jessica Schneck; Patrick McDevitt; Robert Midgett; Casey Kmett; Sandra Umbrecht; Brian Peck; Alicia Bacon Davis; David Bettoun

The discovery of potent and selective cyanamide-based inhibitors of the cysteine protease cathepsin C is detailed. Optimization of the template with regard to plasma stability led to the identification of compound 17, a potent cathepsin C inhibitor with excellent selectivity over other cathepsins and potent in vivo activity in a cigarette smoke mouse model.


Analytical Biochemistry | 2011

Methyltransferases prefer monomer over core-trimmed nucleosomes as in vitro substrates.

Yong Jiang; Jessica Schneck; Maggie Grimes; Amy N. Taylor; Wangfang Hou; Sara H. Thrall; Sharon Sweitzer

Epigenetics is an area of increasing interest for drug discovery, driving the need for assays that use nucleosome substrates. Our studies showed that SUV39H1, a histone lysine methyltransferase, and Dnmt3b/Dnmt3L, a DNA methyltransferase, both exhibited approximately five times more activity on monomer nucleosomes than on DNA-core-trimmed nucleosomes in a scintillation proximity assay (SPA). The methyltransferases recognize and have a preference for nucleosomes with longer DNA strands. Our findings suggest that the use of monomer nucleosomes as substrates using SPA technology could lead to more robust screening assays and potentially more specific small molecule inhibitors of epigenetic enzymes.


Journal of the American Chemical Society | 2016

Nucleosome Binding Alters the Substrate Bonding Environment of Histone H3 Lysine 36 Methyltransferase NSD2

Myles B. Poulin; Jessica Schneck; Rosalie Matico; Wangfang Hou; Patrick McDevitt; Marc A. Holbert; Vern L. Schramm

Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone H3 lysine 36 (H3K36)-specific methyltransferase enzyme that is overexpressed in a number of cancers, including multiple myeloma. NSD2 binds to S-adenosyl-l-methionine (SAM) and nucleosome substrates to catalyze the transfer of a methyl group from SAM to the ε-amino group of histone H3K36. Equilibrium binding isotope effects and density functional theory calculations indicate that the SAM methyl group is sterically constrained in complex with NSD2, and that this steric constraint is released upon nucleosome binding. Together, these results show that nucleosome binding to NSD2 induces a significant change in the chemical environment of enzyme-bound SAM.

Collaboration


Dive into the Jessica Schneck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge