Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica U. Meir is active.

Publication


Featured researches published by Jessica U. Meir.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals

Jessica U. Meir; Cory D. Champagne; Daniel P. Costa; Cassondra L. Williams; Paul J. Ponganis

Species that maintain aerobic metabolism when the oxygen (O(2)) supply is limited represent ideal models to examine the mechanisms underlying tolerance to hypoxia. The repetitive, long dives of northern elephant seals (Mirounga angustirostris) have remained a physiological enigma as O(2) stores appear inadequate to maintain aerobic metabolism. We evaluated hypoxemic tolerance and blood O(2) depletion by 1) measuring arterial and venous O(2) partial pressure (Po(2)) during dives with a Po(2)/temperature recorder on elephant seals, 2) characterizing the O(2)-hemoglobin (O(2)-Hb) dissociation curve of this species, 3) applying the dissociation curve to Po(2) profiles to obtain %Hb saturation (So(2)), and 4) calculating blood O(2) store depletion during diving. Optimization of O(2) stores was achieved by high venous O(2) loading and almost complete depletion of blood O(2) stores during dives, with net O(2) content depletion values up to 91% (arterial) and 100% (venous). In routine dives (>10 min) Pv(O(2)) and Pa(O(2)) values reached 2-10 and 12-23 mmHg, respectively. This corresponds to So(2) of 1-26% and O(2) contents of 0.3 (venous) and 2.7 ml O(2)/dl blood (arterial), demonstrating remarkable hypoxemic tolerance as Pa(O(2)) is nearly equivalent to the arterial hypoxemic threshold of seals. The contribution of the blood O(2) store alone to metabolic rate was nearly equivalent to resting metabolic rate, and mean temperature remained near 37 degrees C. These data suggest that elephant seals routinely tolerate extreme hypoxemia during dives to completely utilize the blood O(2) store and maximize aerobic dive duration.


The Journal of Experimental Biology | 2011

In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins

Paul J. Ponganis; Jessica U. Meir; Cassondra L. Williams

Summary Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O2 stores that underlie the ADL. Therefore, in order to assess strategies of O2 store management, we review (a) the magnitude of O2 stores, (b) past studies of O2 store depletion and (c) our recent investigations of O2 store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O2 store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.


The Journal of Experimental Biology | 2008

Heart rate regulation and extreme bradycardia in diving emperor penguins

Jessica U. Meir; T. K. Stockard; Cassondra L. Williams; K. V. Ponganis; Paul J. Ponganis

SUMMARY To investigate the diving heart rate (fH) response of the emperor penguin (Aptenodytes forsteri), the consummate avian diver, birds diving at an isolated dive hole in McMurdo Sound, Antarctica were outfitted with digital electrocardiogram recorders, two-axis accelerometers and time depth recorders (TDRs). In contrast to any other freely diving bird, a true bradycardia (fH significantly<fH at rest) occurred during diving [dive fH (total beats/duration)=57±2 beats min–1, fH at rest=73±2 beats min–1 (mean ± s.e.m.)]. For dives less than the aerobic dive limit (ADL; duration beyond which [blood lactate] increases above resting levels), dive fH=85±3 beats min–1, whereas fH in dives greater than the ADL was significantly lower (41±1 beats min–1). In dives greater than the ADL, fH reached extremely low values: fH during the last 5 mins of an 18 min dive was 6 beats min–1. Dive fH and minimum instantaneous fH during dives declined significantly with increasing dive duration. Dive fH was independent of swim stroke frequency. This suggests that progressive bradycardia and peripheral vasoconstriction (including isolation of muscle) are primary determinants of blood oxygen depletion in diving emperor penguins. Maximum instantaneous surface interval fH in this study is the highest ever recorded for emperor penguins (256 beats min–1), equivalent to fH at V̇O2 max., presumably facilitating oxygen loading and post-dive metabolism. The classic Scholander–Irving dive response in these emperor penguins contrasts with the absence of true bradycardia in diving ducks, cormorants, and other penguin species.


The Journal of Experimental Biology | 2009

High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins

Jessica U. Meir; Paul J. Ponganis

SUMMARY The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2–hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb–O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.


The Journal of Experimental Biology | 2007

Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins.

Paul J. Ponganis; T. K. Stockard; Jessica U. Meir; Cassondra L. Williams; K. V. Ponganis; R.P. Van Dam; R. Howard

SUMMARY Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular PO2 profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O2 store during dives. Analysis of blood samples from penguins at rest revealed arterial PO2s and O2 contents of 68±7 mmHg (1 mmHg= 133.3 Pa) and 22.5±1.3 ml O2 dl–1 (N=3) and venous values of 41±10 mmHg and 17.4±2.9 ml O2 dl–1 (N=9). Corresponding arterial and venous Hb saturations for a hemoglobin (Hb) concentration of 18 g dl–1 were >91% and 70%, respectively. Analysis of PO2 profiles obtained from birds equipped with intravascular PO2 electrodes and backpack recorders during dives revealed that (1) the decline of the final blood PO2 of a dive in relation to dive duration was variable, (2) final venous PO2 values spanned a 40-mmHg range at the previously measured aerobic dive limit (ADL; dive duration associated with onset of post-dive blood lactate accumulation), (3) final arterial, venous and previously measured air sac PO2 values were indistinguishable in longer dives, and (4) final venous PO2 values of longer dives were as low as 1–6 mmHg during dives. Although blood O2 is not depleted at the ADL, nearly complete depletion of the blood O2 store occurs in longer dives. This extreme hypoxemic tolerance, which would be catastrophic in many birds and mammals, necessitates biochemical and molecular adaptations, including a shift in the O2–Hb dissociation curve of the emperor penguin in comparison to those of most birds. A relatively higher-affinity Hb is consistent with blood PO2 values and O2 contents of penguins at rest.


The Journal of Experimental Biology | 2009

O2 store management in diving emperor penguins

Paul J. Ponganis; T. K. Stockard; Jessica U. Meir; Cassondra L. Williams; K. V. Ponganis; R. Howard

SUMMARY In order to further define O2 store utilization during dives and understand the physiological basis of the aerobic dive limit (ADL, dive duration associated with the onset of post-dive blood lactate accumulation), emperor penguins (Aptenodytes forsteri) were equipped with either a blood partial pressure of oxygen (PO2) recorder or a blood sampler while they were diving at an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Arterial PO2 profiles (57 dives) revealed that (a) pre-dive PO2 was greater than that at rest, (b) PO2 transiently increased during descent and (c) post-dive PO2 reached that at rest in 1.92±1.89 min (N=53). Venous PO2 profiles (130 dives) revealed that (a) pre-dive venous PO2 was greater than that at rest prior to 61% of dives, (b) in 90% of dives venous PO2 transiently increased with a mean maximum PO2 of 53±18 mmHg and a mean increase in PO2 of 11±12 mmHg, (c) in 78% of dives, this peak venous PO2 occurred within the first 3 min, and (d) post-dive venous PO2 reached that at rest within 2.23±2.64 min (N=84). Arterial and venous PO2 values in blood samples collected 1–3 min into dives were greater than or near to the respective values at rest. Blood lactate concentration was less than 2 mmol l–1 as far as 10.5 min into dives, well beyond the known ADL of 5.6 min. Mean arterial and venous PN2 of samples collected at 20–37 m depth were 2.5 times those at the surface, both being 2.1±0.7 atmospheres absolute (ATA; N=3 each), and were not significantly different. These findings are consistent with the maintenance of gas exchange during dives (elevated arterial and venous PO2 and PN2 during dives), muscle ischemia during dives (elevated venous PO2, lack of lactate washout into blood during dives), and arterio-venous shunting of blood both during the surface period (venous PO2 greater than that at rest) and during dives (arterialized venous PO2 values during descent, equivalent arterial and venous PN2 values during dives). These three physiological processes contribute to the transfer of the large respiratory O2 store to the blood during the dive, isolation of muscle metabolism from the circulation during the dive, a decreased rate of blood O2 depletion during dives, and optimized loading of O2 stores both before and after dives. The lack of blood O2 depletion and blood lactate elevation during dives beyond the ADL suggests that active locomotory muscle is the site of tissue lactate accumulation that results in post-dive blood lactate elevation in dives beyond the ADL.


The Journal of Experimental Biology | 2005

Air sac PO2 and oxygen depletion during dives of emperor penguins.

T. Knower Stockard; J. Heil; Jessica U. Meir; Katsufumi Sato; K. V. Ponganis; Paul J. Ponganis

SUMMARY In order to determine the rate and magnitude of respiratory O2 depletion during dives of emperor penguins (Aptenodytes forsteri), air sac O2 partial pressure (PO2) was recorded in 73 dives of four birds at an isolated dive hole. These results were evaluated with respect to hypoxic tolerance, the aerobic dive limit (ADL; dive duration beyond which there is post-dive lactate accumulation) and previously measured field metabolic rates (FMRs). 55% of dives were greater in duration than the previously measured 5.6-min ADL. PO2 and depth profiles revealed compression hyperoxia and gradual O2 depletion during dives. 42% of final PO2s during the dives (recorded during the last 15 s of ascent) were <20 mmHg (<2.7 kPa). Assuming that the measured air sac PO2 is representative of the entire respiratory system, this implies remarkable hypoxic tolerance in emperors. In dives of durations greater than the ADL, the calculated end-of-dive air sac O2 fraction was <4%. The respiratory O2 store depletion rate of an entire dive, based on the change in O2 fraction during a dive and previously measured diving respiratory volume, ranged from 1 to 5 ml O2 kg–1 min–1 and decreased exponentially with diving duration. The mean value, 2.1±0.8 ml O2 kg–1 min–1, was (1) 19–42% of previously measured respiratory O2 depletion rates during forced submersions and simulated dives, (2) approximately one-third of the predicted total body resting metabolic rate and (3) approximately 10% of the measured FMR. These findings are consistent with a low total body metabolic rate during the dive.


The Journal of Experimental Biology | 2011

What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins.

Cassondra L. Williams; Jessica U. Meir; Paul J. Ponganis

SUMMARY The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O2) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O2 saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O2 depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O2 store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O2 depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O2 consumption of 12.4 ml O2 kg–1 muscle min–1, based on a Mb concentration of 6.4 g 100 g–1 muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O2 store depletion.


Journal of Applied Physiology | 2011

Point: High Altitude is for the Birds!

Graham R. Scott; Jessica U. Meir; Lucy A. Hawkes; Peter B. Frappell; William K. Milsom

Birds arose from their dinosaur ancestors and took to the skies over 100 million years ago. Since that time, birds have become abundant at high elevation, they have acquired the ability to migrate over the worlds highest mountains, and they have even found reason to soar over 11,000 m above sea


The Journal of Experimental Biology | 2013

High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose

Jessica U. Meir; William K. Milsom

SUMMARY The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below −20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb–O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood–gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood–O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood–O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.

Collaboration


Dive into the Jessica U. Meir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William K. Milsom

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. V. Ponganis

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. J. Butler

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

T. K. Stockard

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge