Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica W. Wu is active.

Publication


Featured researches published by Jessica W. Wu.


PLOS ONE | 2012

Trans-Synaptic Spread of Tau Pathology In Vivo

Li Liu; Valérie Drouet; Jessica W. Wu; Menno P. Witter; Scott A. Small; Catherine L. Clelland; Karen Duff

Tauopathy in the brain of patients with Alzheimers disease starts in the entorhinal cortex (EC) and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10–11 months old), human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old), intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.


Molecular Neurodegeneration | 2007

Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

Rakez Kayed; Elizabeth Head; Floyd Sarsoza; Tommy Saing; Carl W. Cotman; Mihaela Necula; Lawrence Margol; Jessica W. Wu; Leonid Breydo; Jennifer L. Thompson; Suhail Rasool; Tatyana Gurlo; Peter Butler; Charles G. Glabe

BackgroundAmyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD), amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils.ResultsWe immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC) specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type II diabetes, demonstrating its generic specificity for amyloid fibrils.ConclusionSince the fibril specific antibodies are conformation dependent, sequence-independent, and recognize epitopes that are distinct from those present in prefibrillar oligomers, they may have broad utility for detecting and characterizing the accumulation of amyloid fibrils and fibrillar type oligomers in degenerative diseases.


Biochimica et Biophysica Acta | 2012

α-Synuclein misfolding and Parkinson's disease

Leonid Breydo; Jessica W. Wu; Vladimir N. Uversky

Substantial evidence links α-synuclein, a small highly conserved presynaptic protein with unknown function, to both familial and sporadic Parkinsons disease (PD). α-Synuclein has been identified as the major component of Lewy bodies and Lewy neurites, the characteristic proteinaceous deposits that are the hallmarks of PD. α-Synuclein is a typical intrinsically disordered protein, but can adopt a number of different conformational states depending on conditions and cofactors. These include the helical membrane-bound form, a partially-folded state that is a key intermediate in aggregation and fibrillation, various oligomeric species, and fibrillar and amorphous aggregates. The molecular basis of PD appears to be tightly coupled to the aggregation of α-synuclein and the factors that affect its conformation. This review examines the different aggregation states of α-synuclein, the molecular mechanism of its aggregation, and the influence of environmental and genetic factors on this process.


Journal of Biological Chemistry | 2013

Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons

Jessica W. Wu; Mathieu Herman; Li Liu; Sabrina Simoes; Christopher M. Acker; Helen Y. Figueroa; Joshua I. Steinberg; Martin Margittai; Rakez Kayed; Chiara Zurzolo; Gilbert Di Paolo; Karen Duff

Background: Exogenous, misfolded Tau can be internalized, but details of the mechanism are unknown. Results: Small misfolded Tau species are internalized through endocytosis, anterogradely and retrogradely transported. Conclusion: Tau uptake is dependent on conformation and size of aggregates, and regulated through endocytosis. Significance: Understanding the mechanism by which pathological Tau is internalized provides a foundation for therapeutic approaches targeting uptake and propagation of tauopathy. The accumulation of Tau into aggregates is associated with key pathological events in frontotemporal lobe degeneration (FTD-Tau) and Alzheimer disease (AD). Recent data have shown that misfolded Tau can be internalized by cells in vitro (Frost, B., Jacks, R. L., and Diamond, M. I. (2009) J. Biol. Chem. 284, 12845–12852) and propagate pathology in vivo (Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., and Tolnay, M. (2009) Nat. Cell Biol. 11, 909–913; Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Guerrero-Munoz, M. J., Kiritoshi, T., Neugebauer, V., Jackson, G. R., and Kayed, R. (2012) Sci. Rep. 2, 700). Here we show that recombinant Tau misfolds into low molecular weight (LMW) aggregates prior to assembly into fibrils, and both extracellular LMW Tau aggregates and short fibrils, but not monomers, long fibrils, nor long filaments purified from brain extract are taken up by neurons. Remarkably, misfolded Tau can be internalized at the somatodendritic compartment, or the axon terminals and it can be transported anterogradely, retrogradely, and can enhance tauopathy in vivo. The internalized Tau aggregates co-localize with dextran, a bulk-endocytosis marker, and with the endolysosomal compartments. Our findings demonstrate that exogenous Tau can be taken up by cells, uptake depends on both the conformation and size of the Tau aggregates and once inside cells, Tau can be transported. These data provide support for observations that tauopathy can spread trans-synaptically in vivo, via cell-to-cell transfer.


Journal of Biological Chemistry | 2010

Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid β but Do Not Seed Fibril Formation

Jessica W. Wu; Leonid Breydo; J. Mario Isas; Jerome E. Lee; Yurii G. Kuznetsov; Ralf Langen; Charles G. Glabe

Soluble amyloid oligomers are potent neurotoxins that are involved in a wide range of human degenerative diseases, including Alzheimer disease. In Alzheimer disease, amyloid β (Aβ) oligomers bind to neuronal synapses, inhibit long term potentiation, and induce cell death. Recent evidence indicates that several immunologically distinct structural variants exist as follows: prefibrillar oligomers (PFOs), fibrillar oligomers (FOs), and annular protofibrils. Despite widespread interest, amyloid oligomers are poorly characterized in terms of structural differences and pathological significance. FOs are immunologically related to fibrils because they react with OC, a conformation-dependent, fibril-specific antibody and do not react with antibodies specific for other types of oligomers. However, fibrillar oligomers are much smaller than fibrils. FOs are soluble at 100,000 × g, rich in β-sheet structures, but yet bind weakly to thioflavin T. EPR spectroscopy indicates that FOs display significantly more spin-spin interaction at multiple labeled sites than PFOs and are more structurally similar to fibrils. Atomic force microscopy indicates that FOs are approximately one-half to one-third the height of mature fibrils. We found that Aβ FOs do not seed the formation of thioflavin T-positive fibrils from Aβ monomers but instead seed the formation of FOs from Aβ monomers that are positive for the OC anti-fibril antibody. These results indicate that the lattice of FOs is distinct from the fibril lattice even though the polypeptide chains are organized in an immunologically identical conformation. The FOs resulting from seeded reactions have the same dimensions and morphology as the initial seeds, suggesting that the seeds replicate by growing to a limiting size and then splitting, indicating that their lattice is less stable than fibrils. We suggest that FOs may represent small pieces of single fibril protofilament and that the addition of monomers to the ends of FOs is kinetically more favorable than the assembly of the oligomers into fibrils via sheet stacking interaction. These studies provide novel structural insight into the relationship between fibrils and FOs and suggest that the increased toxicity of FOs may be due to their ability to replicate and the exposure of hydrophobic sheet surfaces that are otherwise obscured by sheet-sheet interactions between protofilaments in a fibril.


Nature Neuroscience | 2016

Neuronal activity enhances tau propagation and tau pathology in vivo

Jessica W. Wu; S. Abid Hussaini; Isle M Bastille; Gustavo A. Rodriguez; Ana Mrejeru; Kelly Rilett; David W. Sanders; Casey Cook; Hongjun Fu; Rick A C M Boonen; Mathieu Herman; Eden Nahmani; Sheina Emrani; Y Helen Figueroa; Marc I. Diamond; Catherine L. Clelland; Selina Wray; Karen Duff

Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimers disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimers disease and other tauopathies.


Molecular Neurodegeneration | 2010

Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers

Rakez Kayed; Isabel Canto; Leonid Breydo; Suhail Rasool; Tamas Lukacsovich; Jessica W. Wu; Ricardo Albay; Anna Pensalfini; Stephen Yeung; Elizabeth Head; J Lawrence Marsh; Charles G. Glabe

BackgroundAge-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates.ResultsWe have produced several monoclonal antibodies that specifically recognize prefibrillar oligomers and do not recognize amyloid fibrils, monomer or natively folded proteins. Like the polyclonal antisera, the individual monoclonals recognize generic epitopes that do not depend on a specific linear amino acid sequence, but they display distinct preferences for different subsets of prefibrillar oligomers. Immunological analysis of a number of different prefibrillar Aβ oligomer preparations show that structural polymorphisms exist in Aβ prefibrillar oligomers that can be distinguished on the basis of their reactivity with monoclonal antibodies. Western blot analysis demonstrates that the conformers defined by the monoclonal antibodies have distinct size distributions, indicating that oligomer structure varies with size. The different conformational types of Aβ prefibrillar oligomers can serve as they serve as templates for monomer addition, indicating that they seed the conversion of Aβ monomer into more prefibrillar oligomers of the same type.ConclusionsThese results indicate that distinct structural variants or conformers of prefibrillar Aβ oligomers exist that are capable of seeding their own replication. These conformers may be analogous to different strains of prions.


Journal of Neurochemistry | 2013

Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice

Suhail Rasool; Hilda Martinez-Coria; Jessica W. Wu; Frank M. LaFerla; Charles G. Glabe

Alzheimers disease (AD) is a devastating disorder that is clinically characterized by a comprehensive cognitive decline. Accumulation of the amyloid‐beta (Aβ) peptide plays a pivotal role in the pathogenesis of AD. In AD, the conversion of Aβ from a physiological soluble monomeric form into insoluble fibrillar conformation is an important event. The most toxic form of Aβ is oligomers, which is the intermediate step during the conversion of monomeric form to fibrillar form. There are at least two types of oligomers: oligomers that are immunologically related to fibrils and those that are not. In transgenic AD animal models, both active and passive anti‐Aβ immunotherapies improve cognitive function and clear the parenchymal accumulation of amyloid plaques in the brain. In this report we studied effect of immunotherapy of two sequence‐independent non‐fibrillar oligomer specific monoclonal antibodies on the cognitive function, amyloid load and tau pathology in 3xTg‐AD mice. Anti‐oligomeric monoclonal antibodies significantly reduce the amyloid load and improve the cognition. The clearance of amyloid load was significantly correlated with reduced tau hyperphosphorylation and improvement in cognition. These results demonstrate that systemic immunotherapy using oligomer‐specific monoclonal antibodies effectively attenuates behavioral and pathological impairments in 3xTg‐AD mice. These findings demonstrate the potential of using oligomer specific monoclonal antibodies as a therapeutic approach to prevent and treat Alzheimers disease.


Biochimica et Biophysica Acta | 1991

Proteolytic modification of neural cell adhesion molecule (NCAM) by the intracellular proteinase calpain

Allan Sheppard; Jessica W. Wu; U. Rutishauser; Gary Lynch

The neural cell adhesion molecule, NCAM, is concentrated in synaptic regions and thus may contribute to the formation and maintenance of connections between brain cells. We present evidence that the cytoplasmic domain of NCAM can be experimentally modified by the intracellular calcium-dependent proteinase, calpain. This degradation could provide a mechanism for rapidly uncoupling and reorganizing synaptic contacts.


Molecular Neurodegeneration | 2012

Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice

Suhail Rasool; Ricardo Albay; Hilda Martinez-Coria; Leonid Breydo; Jessica W. Wu; Saskia Milton; Sunit Misra; Andy Tran; Anna Pensalfini; Frank M. LaFerla; Rakez Kayed; Charles G. Glabe

BackgroundIt is well established that vaccination of humans and transgenic animals against fibrillar Aβ prevents amyloid accumulation in plaques and preserves cognitive function in transgenic mouse models. However, autoimmune side effects have halted the development of vaccines based on full length human Aβ. Further development of an effective vaccine depends on overcoming these side effects while maintaining an effective immune response.ResultsWe have previously reported that the immune response to amyloid oligomers is largely directed against generic epitopes that are common to amyloid oligomers of many different proteins and independent of a specific amino acid sequence. Here we have examined whether we can exploit this generic immune response to develop a vaccine that targets amyloid oligomers using a non-human random sequence amyloid oligomer. In order to study the effect of vaccination against generic oligomer epitopes, a random sequence oligomer (3A) was selected as it forms oligomers that react with the oligomer specific A11 antibody. Oligomer mimics from 3A peptide, Aβ, islet amyloid polypeptide (IAPP), and Aβ fibrils were used to vaccinate Tg2576 mice, which develop a progressive accumulation of plaques and cognitive impairment. Vaccination with the 3A random sequence antigen was just as effective as vaccination with the other antigens in improving cognitive function and reducing total plaque load (Aβ burden) in the Tg2576 mouse brains, but was associated with a much lower incidence of micro hemorrhage than Aβ antigens.ConclusionThese results shows that the amyloid Aβ sequence is not necessary to produce a protective immune response that specifically targets generic amyloid oligomers. Using a non-human, random sequence antigen may facilitate the development of a vaccine that avoids autoimmune side effects.

Collaboration


Dive into the Jessica W. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Duff

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Suhail Rasool

University of California

View shared research outputs
Top Co-Authors

Avatar

Leonid Breydo

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rakez Kayed

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ricardo Albay

University of California

View shared research outputs
Top Co-Authors

Avatar

Saskia Milton

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Liu

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge