Jessica Wing-Man Ho
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica Wing-Man Ho.
PLOS ONE | 2012
Koon-Ho Chan; K.S.L. Lam; On-Yin Cheng; Jason Shing-Cheong Kwan; Philip Wing-Lok Ho; Kenneth K.Y. Cheng; Sookja K. Chung; Jessica Wing-Man Ho; Vivian Yawei Guo; Almin Xu
Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.
Brain and behavior | 2012
Db Ramsden; Philip Wing-Lok Ho; Jessica Wing-Man Ho; H Liu; Danny Hon-Fai So; Hf Tse; Koon-Ho Chan; Sl Ho
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I–V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen‐forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed “mild uncoupling.” UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinsons disease are discussed.
Free Radical Biology and Medicine | 2009
Andrew Chi-Yuen Chu; Philip Wing-Lok Ho; Ken Hon-Hung Kwok; Jessica Wing-Man Ho; Koon-Ho Chan; H Liu; Michelle Hiu-Wai Kung; Db Ramsden; Sl Ho
Mitochondrial uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis. We explored the neuroprotective role of UCP4 with its stable overexpression in SH-SY5Y cells, after exposure to either MPP(+) or dopamine to induce ATP deficiency and oxidative stress. Cells overexpressing UCP4 proliferated faster in normal cultures and after exposure to MPP(+) and dopamine. Differentiated UCP4-overexpressing cells survived better when exposed to MPP(+) with decreased LDH release. Contrary to the mild uncoupling hypothesis, UCP4 overexpression resulted in increased absolute ATP levels (with ADP/ATP ratios similar to those of controls under normal conditions and ADP supplementation) associated with increased respiration rate. Under MPP(+) toxicity, UCP4 overexpression preserved ATP levels and mitochondrial membrane potential (MMP) and reduced oxidative stress; the preserved ATP level was not due to increased glycolysis. Under MPP(+) toxicity, the induction of UCP2 expression in vector controls was absent in UCP4-overexpressing cells, suggesting that UCP4 may compensate for UCP2 expression. UCP4 function does not seem to adhere to the mild uncoupling hypothesis in its neuroprotective mechanisms under oxidative stress and ATP deficiency. UCP4 overexpression increases cell survival by inducing oxidative phosphorylation, preserving ATP synthesis and MMP, and reducing oxidative stress.
Free Radical Biology and Medicine | 2010
Ken Hon-Hung Kwok; Philip Wing-Lok Ho; Andrew Chi-Yuen Chu; Jessica Wing-Man Ho; H Liu; David Chi-Wai Yiu; Koon-Ho Chan; Michelle Hiu-Wai Kung; Db Ramsden; Sl Ho
We explored the protective mechanisms of human neuronal mitochondrial uncoupling protein-5 (UCP5) in MPP(+)- and dopamine-induced toxicity after its stable overexpression in SH-SY5Y cells. We raised specific polyclonal antibodies. Overexpressed UCP5 localized in mitochondria but not in cytosol. UCP5 overexpression increased proton leak, decreased mitochondrial membrane potential (MMP), reduced ATP production, and increased overall oxygen consumption (demonstrating uncoupling activity). UCP5 overexpression did not affect other neuronal UCP expression (UCP2 and UCP4). Overexpressing UCP5 is protective against MPP(+)- and dopamine-induced toxicity. MPP(+) and dopamine exposure for 6h reduced MMP and increased superoxide levels. ATP levels in UCP5-overexpressing cells were preserved under MPP(+) and dopamine toxicity, comparable to levels in untreated vector controls. At 24h, UCP5 overexpression preserved MMP, ATP levels, and cell survival; attenuated superoxide generation; and maintained oxidative phosphorylation as indicated by lower lactate levels. MPP(+) and dopamine exposure induced UCP5 mRNA transcription but did not decrease transcript degradation, as inhibition of transcription by actinomycin-D abolished induction by either toxin. Compared with our previous studies on UCP4, we observed functional differences between UCP4 and UCP5 in enhancing mitochondrial efficiency. These neuronal UCP homologues may work synergistically to maintain oxidative balance (through uncoupling activities) and ATP production (by modifying MMP).
Neurotoxicity Research | 2010
Philip Wing-Lok Ho; H Liu; Jessica Wing-Man Ho; Wei-Yi Zhang; Andrew Chi-Yuen Chu; Ken Hon-Hung Kwok; Xuan Ge; Koon-Ho Chan; Db Ramsden; Sl Ho
Mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). Uncoupling proteins (UCPs) delink ATP production from biofuel oxidation in mitochondria to reduce oxidative stress. UCP2 is expressed in brain, and has neuroprotective effects under various toxic insults. We observed induction of UCP2 expression by leptin in neuronal cultures, and hypothesize that leptin may preserve neuronal survival via UCP2. We showed that leptin preserved cell survival in neuronal SH-SY5Y cells against MPP+ toxicity (widely used in experimental Parkinsonian models) by maintaining ATP levels and mitochondrial membrane potential (MMP); these effects were accompanied by increased UCP2 expression. Leptin had no effect in modulating reactive oxygen species levels. Stable knockdown of UCP2 expression reduced ATP levels, and abolished leptin protection against MPP+-induced mitochondrial depolarization, ATP deficiency, and cell death, indicating that UCP2 is critical in mediating these neuroprotective effects of leptin against MPP+ toxicity. Interestingly, UCP2 knockdown increased UCP4 expression, but not of UCP5. Our findings show that leptin preserves cell survival by maintaining MMP and ATP levels mediated through UCP2 in MPP+-induced toxicity.
Neuroimmunomodulation | 2013
Yawei Guo; Koon-Ho Chan; Wing-Hon Lai; Chung-Wah Siu; Sc Kwan; Hung-Fat Tse; Philip Wing-Lok Ho; Jessica Wing-Man Ho
Background/Aims: Multiple sclerosis (MS) causes significant neurological disability. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. Human bone marrow mesenchymal stem cells (hMSCs) possess anti-inflammatory and immunosuppressive effects. We studied whether hMSCs affect CD1dhighCD5+ regulatory B-cell activity in EAE. Methods: EAE was induced in C57BL/6N mice by immunization with MOG35-55 peptide. hMSCs were injected intravenously into EAE mice on day 3 and day 12 after first immunization. Mice were sacrificed on day 26. Immunohistochemistry of the spinal cord, serum cytokines levels, production of cytokines by cultured splenic cells, and flow cytometry for splenic Th17 and CD1dhighCD5+ regulatory B cells were studied. Results: EAE mice with hMSC treatment on day 3 and day 12 had reduced EAE scores from day 14 to day 26 compared to EAE mice without hMSC treatment, and reduced infiltration of inflammatory cells and demyelination in the spinal cord. EAE mice with hMSC treatment on day 3 and day 12 had: (1) lower serum levels of IL-6, TNF-α (p < 0.0005), and IL-17 (p < 0.005 for day 3, p < 0.0005 for day 12); (2) reduced splenic cell production and secretion of IL-6, TNF-α (p < 0.05), and IL-17 (p < 0.05), and increased splenic production of IL-10; (3) reduced splenic Th17 cells (p < 0.05 for day 3, p < 0.005 for day 12), and (4) increased CD1dhighCD5+ regulatory B cells (p < 0.005) compared to EAE mice without hMSC treatment. Conclusion: hMSC treatment on day 3 and day 12 suppresses EAE severity. The underlying mechanisms involve downregulation of Th17 cells and upregulation of CD1dhighCD5+ regulatory B-cell activity.
Journal of Neuroscience Research | 2005
Philip Wing-Lok Ho; David Yiu-Leung Chan; Ken Hon-Hung Kwok; Andrew Chi-Yuen Chu; Jessica Wing-Man Ho; Michelle Hiu-Wai Kung; Db Ramsden; Sl Ho
Methyl‐4‐phenylpyridinium ion (MPP+), a specific dopaminergic neurotoxin, inhibits mitochondrial complex I activity, generates reactive oxygen species (ROS), reduces ATP production, and induces cell death. We explored changes in expression of uncoupling proteins (UCPs 2, 4, and 5) following MPP+‐induced toxicity in SK‐N‐SH cells over 72 hr at the transcriptional (quantification of mRNA by real‐time RT‐PCR) and translational (Western analysis) levels. UCP5 mRNA and protein were markedly up‐regulated (1 mM MPP+ at 72 hr caused a twofold increase, P < 0.01), as was UCP4 mRNA, albeit to a much lesser extent. Surprisingly, UCP2 mRNA levels decreased at 24 hr (P < 0.05) but thereafter significantly increased to greater than control levels at 72 hr (P < 0.05), although UCP2 protein levels were decreased throughout (1 mM MPP+ at 72 hr caused a reduction of 50%, P < 0.01). The increase in ROS production may be attenuated by UCP4 and UCP5 up‐regulation. The consequence of decreased UCP2 levels is unclear, although this may represent an adaptive response to declines in ATP levels, the subsequent increase in mRNA being a response to further increases in oxidative stress.
Annals of clinical and translational neurology | 2014
H Liu; Song Lu; Philip Wing-Lok Ho; Hf Tse; Shirley Yin-Yu Pang; Michelle Hiu-Wai Kung; Jessica Wing-Man Ho; Db Ramsden; Zhongjun Zhou; Sl Ho
Mutations in leucine‐rich repeat kinase 2 (LRRK2) pose a significant genetic risk in familial and sporadic Parkinsons disease (PD). R1441 mutation (R1441G/C) in its GTPase domain is found in familial PD. How LRRK2 interacts with synaptic proteins, and its role in dopamine (DA) homeostasis and synaptic vesicle recycling remain unclear.
Free Radical Biology and Medicine | 2012
Jessica Wing-Man Ho; Philip Wing-Lok Ho; H Liu; Danny Hon-Fai So; Koon-Ho Chan; Zero Ho-Man Tse; Michelle Hiu-Wai Kung; Db Ramsden; Sl Ho
Mitochondrial uncoupling protein-4 (UCP4) enhances neuronal survival in 1-methyl-4-phenylpyridinium (MPP(+)) toxicity by suppressing oxidative stress and preserving intracellular ATP and mitochondrial membrane potential (MMP). NF-κB regulates neuronal viability via its complexes, p65 mediating cell death and c-Rel promoting cell survival. We reported previously that NF-κB mediates UCP4 neuroprotection against MPP(+) toxicity. Here, we investigated its link with the NF-κB c-Rel prosurvival pathway in alleviating mitochondrial dysfunction and oxidative stress. We overexpressed a c-Rel-encoding plasmid in SH-SY5Y cells and showed that c-Rel overexpression induced NF-κB activity without affecting p65 level. Overexpression of c-Rel increased UCP4 promoter activity and protein expression. Electrophoretic mobility shift assay showed that H(2)O(2) increased NF-κB binding to the UCP4 promoter and that NF-κB complexes were composed of p50/p50 and p50/c-Rel dimers. Under H(2)O(2)-induced oxidative stress, UCP4 knockdown significantly increased superoxide levels, decreased reduced glutathione (GSH) levels, and increased oxidized glutathione levels, compared to controls. UCP4 expression induced by c-Rel overexpression significantly decreased superoxide levels and preserved GSH levels and MMP under similar stress. These protective effects of c-Rel overexpression in H(2)O(2)-induced oxidative stress were significantly reduced after UCP4 knockdown, indicating that UCP4 is a target effector gene of the NF-κB c-Rel prosurvival pathway to mitigate the effects of oxidative stress.
PLOS ONE | 2012
Philip Wing-Lok Ho; Jessica Wing-Man Ho; Hf Tse; Danny Hon-Fai So; David Chi-Wai Yiu; H Liu; Koon-Ho Chan; Michelle Hiu-Wai Kung; Db Ramsden; Sl Ho
Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP+), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis.