Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Wong is active.

Publication


Featured researches published by Jessica Wong.


Journal of Proteome Research | 2011

Protein Microarray Signature of Autoantibody Biomarkers for the Early Detection of Breast Cancer

Karen S. Anderson; Sahar Sibani; Garrick Wallstrom; Ji Qiu; Eliseo A. Mendoza; Jacob Raphael; Eugenie Hainsworth; Wagner R. Montor; Jessica Wong; Jin Gyoon Park; Naa Norkor Lokko; Tanya Logvinenko; Andrew K. Godwin; Jeffrey R. Marks; Paul F. Engstrom; Joshua LaBaer

Cancer patients spontaneously generate autoantibodies (AAb) to tumor-derived proteins. To detect AAb, we have probed novel high-density custom protein microarrays (NAPPA) expressing 4988 candidate tumor antigens with sera from patients with early stage breast cancer (IBC), and bound IgG was measured. We used a three-phase serial screening approach. First, a prescreen was performed to eliminate uninformative antigens. Sera from stage I-III IBC (n = 53) and healthy women (n = 53) were screened for AAb to all 4988 protein antigens. Antigens were selected if the 95th percentile of signal of cases and controls were significantly different (p < 0.05) and if the number of cases with signals above the 95th percentile of controls was significant (p < 0.05). These 761 antigens were screened using an independent set of IBC sera (n = 51) and sera from women with benign breast disease (BBD) (n = 39). From these, 119 antigens had a partial area under the ROC curve (p < 0.05), with sensitivities ranging from 9-40% at >91% specificity. Twenty-eight of these antigens were confirmed using an independent serum cohort (n = 51 cases/38 controls, p < 0.05). Using all 28 AAb, a classifier was identified with a sensitivity of 80.8% and a specificity of 61.6% (AUC = 0.756). These are potential biomarkers for the early detection of breast cancer.


Journal of Proteome Research | 2008

Application of Protein Microarrays for Multiplexed Detection of Antibodies to Tumor Antigens in Breast Cancer

Karen S. Anderson; Jessica Wong; Jacob Raphael; Eugenie Hainsworth; Gokhan Demirkan; Daniel W. Cramer; Diana Aronzon; F. Stephen Hodi; Lyndsay Harris; Tanya Logvinenko; Joshua LaBaer

There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum; may exist in greater concentrations than their cognate antigens; and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies.


Cancer Epidemiology, Biomarkers & Prevention | 2010

p53 Autoantibodies as Potential Detection and Prognostic Biomarkers in Serous Ovarian Cancer

Karen S. Anderson; Jessica Wong; Allison F. Vitonis; Christopher P. Crum; Patrick M. Sluss; Joshua LaBaer; Daniel W. Cramer

Background: This study examined the value of serum p53 autoantibodies (p53-AAb) as detection and prognostic biomarkers in ovarian cancer. Methods: p53-AAb were detected by ELISA in sera obtained preoperatively from women undergoing surgery for a pelvic mass. This group included women subsequently diagnosed with invasive serous ovarian cancer (n = 60), nonserous ovarian cancers (n = 30), and women with benign disease (n = 30). Age-matched controls were selected from the general population (n = 120). Receiver operating characteristic curves were constructed to compare the values of p53-AAb, CA 125, and HE4 as a screening biomarker. Kaplan-Meier curves and Cox proportional hazards modeling were used to assess its prognostic value on survival. Results: p53-AAb were detected in 25 of 60 (41.7%) of serous cases, 4 of 30 (13.3%) nonserous cases, 3 of 30 (10%) benign disease cases, and 10 of 120 (8.3%) controls (combined P = 0.0002). p53-AAb did not significantly improve the detection of cases [area under the curve (AUC), 0.69] or the discrimination of benign versus malignant disease (AUC, 0.64) compared with CA 125 (AUC, 0.99) or HE4 (AUC, 0.98). In multivariate analysis among cases, p53-AAb correlated only with a family history of breast cancer (P = 0.01). Detectable p53 antibodies in pretreatment sera were correlated with improved overall survival (P = 0.04; hazard ratio, 0.57; 95% confidence interval, 0.33-0.97) in serous ovarian cancer. Conclusions: Antibodies to p53 are detected in the sera of 42% of patients with advanced serous ovarian cancer. Impact: Although their utility as a preoperative diagnostic biomarker, beyond CA 125 and HE4, is limited, p53-AAb are prognostic for improved overall survival. Cancer Epidemiol Biomarkers Prev; 19(3); 859–68


Journal of Immunological Methods | 2009

Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays

Jessica Wong; Sahar Sibani; Naa Norkor Lokko; Joshua LaBaer; Karen S. Anderson

Rapid detection of antibody immunity in serum or plasma, whether to pathogenic antigens, tumor antigens, or autoimmune antigens, is critical for diagnosis, monitoring, and biomarker assessment of the immune response. Individual or multiplexed ELISAs that use purified recombinant proteins are dependent on a priori protein purification, a labor-intensive process that may take months to obtain proteins of sufficient purity and stability for serologic assays. We developed a programmable multiplexed immunoassay for the rapid monitoring of humoral immunity using the Luminex suspension bead array platform. In this approach, epitope-tagged antigens (GST- or FLAG-tagged) are expressed using in vitro transcription and translation, and captured onto anti-epitope-coupled Luminex SeroMap beads. The antigen-loaded beads are mixed, serum is added, and human IgG is detected with standard secondary detection reagents. By coupling high-throughput DNA preparation of cDNA ORFs with antigen expression/capture, we demonstrate that 71/72 (98.6%) of GST-tagged proteins can be expressed and specifically detected on the bead ELISA. Detection of antibodies to the test viral antigen EBNA-1 in human sera is highly reproducible, with intra-assay variation of 3-8%, inter-assay variation of 5%, and with stability over 11 months. The specificity and limits of detection of the bead ELISAs for the tumor antigen p53 are comparable to both standard protein ELISAs and plate-based programmable (RAPID) ELISAs, and are also comparable to the detection of directly-conjugated p53 protein. Multiplexing a panel of analytes does not impair the sensitivity of antibody detection. Immunity to a panel of EBV-derived antigens (EBNA-1, EBNA-3A, EBNA-3B, and LMP-2) is specifically and differentially detected within healthy donor sera. This method allows for rapid conversion of ORFeome-derived cDNAs to a multiplexed bead ELISA to detect antibody immunity to both infectious and tumor antigens.


British Journal of Cancer | 2011

Serum antibodies to the HPV16 proteome as biomarkers for head and neck cancer

Karen S. Anderson; Jessica Wong; Gypsyamber D'Souza; Angelika B. Riemer; Jochen H. Lorch; Robert I. Haddad; Sara I. Pai; J Longtine; Michael D. McClean; Joshua LaBaer; Karl T. Kelsey; Mitchell C. Posner

Background:Human papillomavirus (HPV) type 16 is associated with oropharyngeal carcinomas (OPC). Antibodies (Abs) to HPV16 E6 and E7 oncoproteins have been detected in patient sera; however, Abs to other early HPV-derived proteins have not been well explored.Methods:Antibodies to the HPV16 proteome were quantified using a novel multiplexed bead assay, using C-terminal GST-fusion proteins captured onto Luminex beads. Sera were obtained from untreated patients with OPC (N=40), partners of patients with HPV16+ OPC (N=11), and healthy controls (N=50).Results:Oropharyngeal carcinomas patients with known virus-like capsid particle+ Abs had elevated serum Abs to HPV16 E1, E2, E4, E6, and E7, and L1 antibody levels, but not E5. The ratios of specific median fluorescence intensity to p21-GST compared with controls were E1: 50.7 vs 2.1; E4: 14.6 vs 1.3; E6: 11.3 vs 2.4; E7: 43.1 vs 2.6; and L1: 10.3 vs 2.6 (each P⩽0.01). In a validation cohort, HPV16 E1, E2, and E7 antibody levels were significantly elevated compared with healthy control samples (P⩽0.02) and partners of OPC patients (P⩽0.01).Conclusion:Patients with HPV16+ OPC have detectable Abs to E1, E2, and E7 proteins, which are potential biomarkers for HPV-associated OPC.


Proteomics Clinical Applications | 2008

Tracking humoral responses using self assembling protein microarrays

Karen S. Anderson; Jacob Raphael; Eugenie Hainsworth; Sahar Sibani; Wagner R. Montor; Marcin Pacek; Jessica Wong; Mariam Eljanne; Martin G. Sanda; Yanhui Hu; Tanya Logvinenko; Joshua LaBaer

The humoral immune response is a highly specific and adaptive sensor for changes in the bodys protein milieu, which responds to novel structures of both foreign and self antigens. Although Igs represent a major component of human serum and are vital to survival, little is known about the response specificity and determinants that govern the human immunome. Historically, antigen‐specific humoral immunity has been investigated using individually produced and purified target proteins, a labor‐intensive process that has limited the number of antigens that have been studied. Here, we present the development of methods for applying self‐assembling protein microarrays and a related method for producing 96‐well formatted macroarrays for monitoring the humoral response at the proteome scale. Using plasmids encoding full‐length cDNAs for over 850 human proteins and 1700 pathogen proteins, we demonstrate that these microarrays are highly sensitive, specific, reproducible, and can simultaneously measure immunity to thousands of proteins without a priori protein purification. Using this approach, we demonstrate the detection of humoral immunity to known and novel self‐antigens, cancer antigens, autoimmune antigens, as well as pathogen‐derived antigens. This represents a powerful and versatile tool for monitoring the immunome in health and disease.


Journal of Proteome Research | 2015

Autoantibody signature for the serologic detection of ovarian cancer.

Karen S. Anderson; Daniel W. Cramer; Sahar Sibani; Garrick Wallstrom; Jessica Wong; Jin Gyoon Park; Ji Qiu; Allison F. Vitonis; Joshua LaBaer

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer.


British Journal of Dermatology | 2010

Elevation of serum epidermal growth factor and interleukin 1 receptor antagonist in active psoriasis vulgaris.

Karen S. Anderson; Stina Petersson; Jessica Wong; Emman Shubbar; Naa Norkor Lokko; Maria Carlström; Charlotta Enerbäck

Background  Psoriatic plaques present a complex expression profile, including high levels of cytokines, chemokines and growth factors. Circulating cytokines have been suggested to reflect the activation status of the inflammatory process.


Blood | 2014

Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL.

Lili Wang; Alex K. Shalek; Michael S. Lawrence; Ruihua Ding; Jellert T. Gaublomme; Nathalie Pochet; Petar Stojanov; Carrie Sougnez; Sachet A. Shukla; Kristen E. Stevenson; Wandi Zhang; Jessica Wong; Quinlan L. Sievers; Bryan T. MacDonald; Alexander R. Vartanov; Natalie R. Goldstein; Donna Neuberg; Xi He; Eric S. Lander; Nir Hacohen; Aviv Regev; Gad Getz; Jennifer R. Brown; Hongkun Park; Catherine J. Wu

One major goal of cancer genome sequencing is to identify key genes and pathways that drive tumor pathogenesis. Although many studies have identified candidate driver genes based on recurrence of mutations in individual genes, subsets of genes with nonrecurrent mutations may also be defined as putative drivers if they affect a single biological pathway. In this fashion, we previously identified Wnt signaling as significantly mutated through large-scale massively parallel DNA sequencing of chronic lymphocytic leukemia (CLL). Here, we use a novel method of biomolecule delivery, vertical silicon nanowires, to efficiently introduce small interfering RNAs into CLL cells, and interrogate the effects of 8 of 15 mutated Wnt pathway members identified across 91 CLLs. In HEK293T cells, mutations in 2 genes did not generate functional changes, 3 led to dysregulated pathway activation, and 3 led to further activation or loss of repression of pathway activation. Silencing 4 of 8 mutated genes in CLL samples harboring the mutated alleles resulted in reduced viability compared with leukemia samples with wild-type alleles. We demonstrate that somatic mutations in CLL can generate dependence on this pathway for survival. These findings support the notion that nonrecurrent mutations at different nodes of the Wnt pathway can contribute to leukemogenesis.


Journal of Immunological Methods | 2003

Evaluation of antigen-specific responses using in vitro enriched T cells

Norman G. Jones; Deepak Agrawal; Mohamed Elrefaei; A Hanson; Vladimir Novitsky; Jessica Wong; Huyen Cao

Antigen-specific lymphocytes are important in the immune response to viral infection. Peripheral blood mononuclear cells (PBMC) are traditionally used as a source of effector cells in most immunological studies. We described here the use of the bispecific monoclonal antibodies (BSMAB) anti CD3:CD8 (CD3,8) and anti CD3:CD4 (CD3,4B) to expand and selectively enrich CD4+ and CD8+ T cells populations, respectively. The expanded cells demonstrated >90% CD3+CD4+ or CD3+CD8+ by 14 days. We measured HIV- and CMV-specific responses of these subset-enriched T cell and found that sensitivity and specificity is similar or higher when compared to PBMC in various cellular immunology assays (CMI). Vbeta analysis of BSMAB-enriched cells demonstrated comparable repertoire to the parent PBMC. Although both CD45RA(hi) and CD45RO(hi) cell populations were expanded with the BSMAB, selective subset depletion demonstrated that the antigen-specific T cell responses were restricted to the initial CD45RO(hi) memory effector subgroup. In conclusion, BSMAB in vitro enrichment of T cells allows significant expansion of the cell population without loss of specificity. This technique of cell expansion permits studies of T cell subset function in situations where the initial cell source is scarce, and presents an alternative for viable and functional T cells in immunological assays.

Collaboration


Dive into the Jessica Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua LaBaer

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge