Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessie Wang is active.

Publication


Featured researches published by Jessie Wang.


British Journal of Clinical Pharmacology | 2013

Apixaban, an oral, direct factor Xa inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects

Charles Frost; Jessie Wang; Sunil Nepal; Alan Schuster; Yu Chen Barrett; Rogelio Mosqueda‐Garcia; Richard A. Reeves; Frank LaCreta

To evaluate apixaban single dose safety, tolerability, pharmacokinetics and pharmacodynamics and assess the effect of food on apixaban pharmacokinetics.


British Journal of Clinical Pharmacology | 2013

Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects.

Charles Frost; Sunil Nepal; Jessie Wang; Alan Schuster; Wonkyung Byon; Rebecca A. Boyd; Zhigang Yu; Andrew Shenker; Yu Chen Barrett; Rogelio Mosqueda‐Garcia; Frank LaCreta

AIM Apixaban is an oral factor Xa inhibitor approved for stroke prevention in atrial fibrillation and thromboprophylaxis in patients who have undergone elective hip or knee replacement surgery and under development for treatment of venous thromboembolism. This study examined the safety, pharmacokinetics and pharmacodynamics of multiple dose apixaban. METHOD This double-blind, randomized, placebo-controlled, parallel group, multiple dose escalation study was conducted in six sequential dose panels - apixaban 2.5, 5, 10 and 25 mg twice daily and 10 and 25 mg once daily- with eight healthy subjects per panel. Within each panel, subjects were randomized (3:1) to oral apixaban or placebo for 7 days. Subjects underwent safety assessments and were monitored for adverse events (AEs). Blood samples were taken to measure apixaban plasma concentration, international normalized ratio (INR), activated partial thromboplastin time (aPTT) and modified prothrombin time (mPT). RESULTS Forty-eight subjects were randomized and treated (apixaban, n = 36; placebo, n = 12); one subject receiving 2.5 mg twice daily discontinued due to AEs (headache and nausea). No dose limiting AEs were observed. Apixaban maximum plasma concentration was achieved ~3 h post-dose. Exposure increased approximately in proportion to dose. Apixaban steady-state concentrations were reached by day 3, with an accumulation index of 1.3-1.9. Peak : trough ratios were lower for twice daily vs. once daily regimens. Clotting times showed dose-related increases tracking the plasma concentration-time profile. CONCLUSION Multiple oral doses of apixaban were safe and well tolerated over a 10-fold dose range, with pharmacokinetics with low variability and concentration-related increases in clotting time measures.


The Journal of Clinical Pharmacology | 2016

Pharmacokinetics, pharmacodynamics, and safety of apixaban in subjects with end‐stage renal disease on hemodialysis

Xiaoli Wang; Thomas Marbury; Jessie Wang; Ming Chang; Donglu Zhang; Yan Song; Janice Pursley; Rebecca A. Boyd; Charles Frost

An open‐label, parallel‐group, single‐dose study was conducted to assess the pharmacokinetics, pharmacodynamics, and safety of apixaban in 8 subjects with end‐stage renal disease (ESRD) on hemodialysis compared with 8 subjects with normal renal function. A single oral 5‐mg dose of apixaban was administered once to healthy subjects and twice to subjects with ESRD, separated by ≥7 days: 2 hours before (on hemodialysis) and immediately after a 4‐hour hemodialysis session (off hemodialysis). Blood samples were collected for determination of apixaban pharmacokinetic parameters, measures of clotting (prothrombin time, international normalized ratio, activated partial thromboplastin time), and anti‐factor Xa (FXa) activity. Compared with healthy subjects, apixaban Cmax and AUCinf were 10% lower and 36% higher, respectively, in subjects with ESRD off hemodialysis. Hemodialysis in subjects with ESRD was associated with reductions in apixaban Cmax and AUCinf of 13% and 14%, respectively. The percent change from baseline in clotting measures was similar in healthy subjects and subjects with ESRD, and differences in anti‐FXa activity were similar to differences in apixaban concentration. A single 5‐mg oral dose of apixaban was well tolerated in both groups. In conclusion, ESRD resulted in a modest increase (36%) in apixaban AUC and no increase in Cmax, and hemodialysis had a limited impact on apixaban clearance.


British Journal of Clinical Pharmacology | 2013

Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects

Vijay V. Upreti; Jessie Wang; Yu Chen Barrett; Wonkyung Byon; Rebecca A. Boyd; Janice Pursley; Frank LaCreta; Charles Frost

AIM Apixaban is an oral, direct, factor-Xa inhibitor approved for thromboprophylaxis in patients who have undergone elective hip or knee replacement surgery and for prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation. This open label, parallel group study investigated effects of extremes of body weight on apixaban pharmacokinetics, pharmacodynamics, safety and tolerability. METHOD Fifty-four healthy subjects were enrolled [18 each into low (≤50 kg), reference (65-85 kg) and high (≥120 kg) body weight groups]. Following administration of a single oral dose of 10 mg apixaban, plasma and urine samples were collected for determination of apixaban pharmacokinetics and anti-factor Xa activity. Adverse events, vital signs and laboratory assessments were monitored. RESULTS Compared with the reference body weight group, low body weight had approximately 27% [90% confidence interval (CI): 8-51%] and 20% (90% CI: 11-42%) higher apixaban maximum observed plasma concentration (Cmax) and area under the concentration-time curve extrapolated to infinity (AUC(0,∞)), respectively, and high body weight had approximately 31% (90% CI: 18-41%) and 23% (90% CI: 9-35%) lower apixaban Cmax and AUC(0,∞) , respectively. Apixaban renal clearance was similar across the weight groups. Plasma anti-factor Xa activity showed a direct, linear relationship with apixaban plasma concentration, regardless of body weight group. Apixaban was well tolerated in this study. CONCLUSION The modest change in apixaban exposure is unlikely to require dose adjustment for apixaban based on body weight alone. However, caution is warranted in the presence of additional factors (such as severe renal impairment) that could increase apixaban exposure.


The Journal of Clinical Pharmacology | 2016

Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.

Ming Chang; Zhigang Yu; Andrew Shenker; Jessie Wang; Janice Pursley; Wonkyung Byon; Rebecca A Boyd; Frank P. LaCreta; Charles Frost

This open‐label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10‐mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24‐hour creatinine clearance (CLcr) as a measure of renal function. The relationships between 24‐hour CLcr and iohexol clearance, estimated CLcr (Cockcroft‐Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti–factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24‐hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti–factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft‐Gault, and MDRD was consistent with that determined by 24‐hour CLcr. Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone.


British Journal of Clinical Pharmacology | 2015

Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

Charles Frost; Wonkyung Byon; Yan Song; Jessie Wang; Alan Schuster; Rebecca A. Boyd; Donglu Zhang; Zhigang Yu; Clapton Dias; Andrew Shenker; Frank LaCreta

AIM Apixaban is an orally active inhibitor of coagulation factor Xa and is eliminated by multiple pathways, including renal and non-renal elimination. Non-renal elimination pathways consist of metabolism by cytochrome P450 (CYP) enzymes, primarily CYP3A4, as well as direct intestinal excretion. Two single sequence studies evaluated the effect of ketoconazole (a strong dual inhibitor of CYP3A4 and P-glycoprotein [P-gp]) and diltiazem (a moderate CYP3A4 inhibitor and a P-gp inhibitor) on apixaban pharmacokinetics in healthy subjects. METHOD In the ketoconazole study, 18 subjects received apixaban 10 mg on days 1 and 7, and ketoconazole 400 mg once daily on days 4-9. In the diltiazem study, 18 subjects received apixaban 10 mg on days 1 and 11 and diltiazem 360 mg once daily on days 4-13. RESULTS Apixaban maximum plasma concentration and area under the plasma concentration-time curve extrapolated to infinity increased by 62% (90% confidence interval [CI], 47, 78%) and 99% (90% CI, 81, 118%), respectively, with co-administration of ketoconazole, and by 31% (90% CI, 16, 49%) and 40% (90% CI, 23, 59%), respectively, with diltiazem. CONCLUSION A 2-fold and 1.4-fold increase in apixaban exposure was observed with co-administration of ketoconazole and diltiazem, respectively.


Thrombosis and Haemostasis | 2012

A randomised assessment of the pharmacokinetic, pharmacodynamic and safety interaction between apixaban and enoxaparin in healthy subjects

Yu Chen Barrett; Jessie Wang; Y. Song; J. Pursley; P. Wastall; R. Wright; F. LaCreta; Charles Frost

Following major orthopaedic surgery, guidelines usually recommend continued thromboprophylaxis after hospitalisation. The availability of an effective oral anticoagulant with an acceptable safety profile that does not require routine clinical monitoring may lead clinicians to switch patients from subcutaneous to an oral therapy either during hospitalisation or at discharge. The purpose of this study was to assess the effect of enoxaparin on the pharmacokinetics, pharmacodynamics and safety of apixaban, an oral, direct inhibitor of coagulation factor Xa. In this four-period, crossover study, 20 healthy subjects were randomised to receive single doses of apixaban 5 mg orally; enoxaparin 40 mg subcutaneously; apixaban 5 mg and enoxaparin 40 mg concomitantly; and apixaban 5 mg followed 6 hours (h) after by enoxaparin 40 mg. Pharmacokinetics of apixaban were not affected by enoxaparin. Average peak pharmacodynamic effect, measured by anti-Xa activity, was 1.36 U/ml after administration of apixaban and was 0.42 U/ml after enoxaparin. Following co-administration of apixaban and enoxaparin, peak anti-Xa activity was 42% higher than for apixaban alone. Following administration of enoxaparin 6 h after apixaban, peak anti-Xa activity was 15% higher than for apixaban alone. In conclusion, enoxaparin had no effect on the pharmacokinetics of apixaban. The increase in anti-Xa activity after co-administration was modest and appeared to be additive. Peak anti-Xa activity increases are mitigated by separating administration of subcutaneous anticoagulation and apixaban when switching between therapies; the potential for pharmacodynamic interaction may be further mitigated by transitioning at the next scheduled dose (12 h).


Clinical Pharmacology: Advances and Applications | 2014

A randomized direct comparison of the pharmacokinetics and pharmacodynamics of apixaban and rivaroxaban.

Charles Frost; Yan Song; Yu Chen Barrett; Jessie Wang; Janice Pursley; Rebecca A Boyd; Frank P. LaCreta

Background Currently, there are no direct comparisons of apixaban and rivaroxaban, two new oral direct factor Xa inhibitors approved for management of thromboembolic disorders. Objective Compare the pharmacokinetics and anti-factor Xa activity (AXA) of apixaban and rivaroxaban. Methods In this randomized, open-label, two-period, two-treatment crossover study, healthy subjects (N=14) received apixaban 2.5 mg twice daily (BID) and rivaroxaban 10 mg once daily (QD) for 4 days with a ≥4.5-day washout. Plasma samples were obtained for pharmacokinetic and AXA assessments; parameters were calculated using noncompartmental methods. Results Median time-to-maximum concentration was 2 hours for both compounds, and the mean half-life was 8.7 and 7.9 hours for apixaban and rivaroxaban, respectively. Daily exposure, the area under the curve (AUC(0–24)), appeared similar for rivaroxaban (1,094 ng · h/mL) and apixaban (935 ng · h/mL), whereas mean peak-to-trough plasma concentration ratio was 3.6-fold greater for rivaroxaban (16.9) than apixaban (4.7). Coefficient of variation for exposure parameters (AUC0–24, Cmax, Cmin) was 20%–24% for apixaban versus 29%–46% for rivaroxaban. Peak AXA, AXA AUC(0–24), and AXA fluctuation were ~2.5-, 1.3-, and 3.5-fold higher for rivaroxaban than apixaban, respectively. Trough concentrations and AXA were lower for rivaroxaban (10 ng/mL and 0.17 IU/mL vs 17 ng/mL and 0.24 IU/mL for apixaban, respectively). Rivaroxaban exhibited a steeper concentration–AXA response (slope: 0.0172 IU/ng vs 0.0134 IU/ng for apixaban, P<0.0001). Conclusion Apixaban 2.5 mg BID demonstrated less intersubject variability in exposure, lower AXA AUC, and higher trough and smaller peak-to-trough fluctuations in plasma concentration and AXA, suggesting more constant anticoagulation compared with rivaroxaban 10 mg QD. However, the clinical impact of these differences on the relative efficacy and safety of apixaban and rivaroxaban remains to be determined.


principles and practice of constraint programming | 2014

Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of apixaban in healthy Japanese male subjects.

Naomi Yamahira; Charles Frost; Hiroyuki Fukase; Zhigang Yu; Jessie Wang; Janice Pursley; Frank P. LaCreta; Masaki Hiraoka

OBJECTIVE This was a randomized, placebo-controlled, double-blind, sequential, ascending-dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple oral doses of apixaban in healthy Japanese male subjects. METHODS The study was conducted using three sequential dose panels: apixaban 2.5 mg, 5 mg, and 10 mg given twice daily. For each dose panel, subjects were randomly assigned to receive oral apixaban (n = 6) or matching placebo (n = 2) for 7 days. The pharmacokinetics of apixaban and effect on pharmacodynamic variables (clotting assays and anti-Xa activity) were assessed on day 1 and day 7 of treatment. Safety was assessed throughout the study. Only after the preceding dose was confirmed to be safe and well-tolerated subjects were enrolled into the next-higher-dose panel. RESULTS Apixaban was safe and well-tolerated in these healthy Japanese male subjects across the doses evaluated. On day 7, peak plasma concentrations were reached ~ 3 hours postdose, and increases in peak plasma concentration (C(max)), trough plasma concentration, and area under the plasma concentration-time curve across one dosing interval (12 hours) were tested dose-proportional across the dose range. A modest degree of accumulation was observed that was similar for all doses (accumulation index of 1.7 to 2.0), and renal clearance was consistent across doses (0.91 L/h - 1.07 L/h). Exposure-dependent prolongation of prothrombin time, activated partial thromboplastin time, modified prothrombin time, and increases in anti-Xa activity were observed after single and multiple doses of apixaban. CONCLUSIONS Apixaban was safe and well-tolerated in healthy Japanese subjects. The pharmacokinetic profile of apixaban following multiple twice-daily doses was linear, and exposure parameters such as C(max), observed at ~ 3 hours post-dose, and area under the plasma concentration-time curve increased in a dose-proportional manner. Pharmacodynamic profiles closely followed the apixaban plasma concentration-time profiles.


British Journal of Clinical Pharmacology | 2014

Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban

Charles Frost; Andrew Shenker; Mohit D. Gandhi; Janice Pursley; Yu Chen Barrett; Jessie Wang; Donglu Zhang; Wonkyung Byon; Rebecca A. Boyd; Frank LaCreta

AIM To assess pharmacokinetic and pharmacodynamic interactions between naproxen (a non-steroidal anti-inflammatory drug) and apixaban (an oral, selective, direct factor-Xa inhibitor). METHOD In this randomized, three period, two sequence study, 21 healthy subjects received a single oral dose of apixaban 10 mg, naproxen 500 mg or co-administration of both. Blood samples were collected for determination of apixaban and naproxen pharmacokinetics and pharmacodynamics (anti-Xa activity, international normalized ratio [INR] and arachidonic acid-induced platelet aggregation [AAI-PA]). Adverse events, bleeding time and routine safety assessments were also evaluated. RESULTS Apixaban had no effect on naproxen pharmacokinetics. However, following co-administration, apixaban AUC(0,∞), AUC(0,t) and Cmax were 54% (geometric mean ratio 1.537; 90% confidence interval (CI) 1.394, 1.694), 55% (1.549; 90% CI 1.400, 1.713) and 61% (1.611; 90% CI 1.417, 1.831) higher, respectively. Mean (standard deviation [SD]) anti-Xa activity at 3 h post-dose was approximately 60% higher following co-administration compared with apixaban alone, 4.4 [1.0] vs. 2.7 [0.7] IU ml(-1) , consistent with the apixaban concentration increase following co-administration. INR was within the normal reference range after all treatments. AAI-PA was reduced by approximately 80% with naproxen. Co-administration had no impact beyond that of naproxen. Mean [SD] bleeding time was higher following co-administration (9.1 [4.1] min) compared with either agent alone (5.8 [2.3] and 6.9 [2.6] min for apixaban and naproxen, respectively). CONCLUSION Co-administration of naproxen with apixaban results in higher apixaban exposure and appears to occur through increased apixaban bioavailability. The effects on anti-Xa activity, INR and inhibition of AAI-PA observed in this study were consistent with the individual pharmacologic effects of apixaban and naproxen.

Collaboration


Dive into the Jessie Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Song

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge