Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessy J. Alexander is active.

Publication


Featured researches published by Jessy J. Alexander.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice

Tony Wyss-Coray; Fengrong Yan; Amy Lin; John D. Lambris; Jessy J. Alexander; Richard J. Quigg; Eliezer Masliah

Abnormal accumulation of β-amyloid (Aβ) in Alzheimers disease (AD) is associated with prominent brain inflammation. Whereas earlier studies concluded that this inflammation is detrimental, more recent animal data suggest that at least some inflammatory processes may be beneficial and promote Aβ clearance. Consistent with these observations, overproduction of transforming growth factor (TGF)-β1 resulted in a vigorous microglial activation that was accompanied by at least a 50% reduction in Aβ accumulation in human amyloid precursor protein (hAPP) transgenic mice. In a search for inflammatory mediators associated with this reduced pathology, we found that brain levels of C3, the central component of complement and a key inflammatory protein activated in AD, were markedly higher in hAPP/TGF-β1 mice than in hAPP mice. To assess the importance of complement in the pathogenesis of AD-like disease in mice, we inhibited C3 activation by expressing soluble complement receptor-related protein y (sCrry), a complement inhibitor, in the brains of hAPP mice. Aβ deposition was 2- to 3-fold higher in 1-year-old hAPP/sCrry mice than in age-matched hAPP mice and was accompanied by a prominent accumulation of degenerating neurons. These results indicate that complement activation products can protect against Aβ-induced neurotoxicity and may reduce the accumulation or promote the clearance of amyloid and degenerating neurons. These findings provide evidence for a role of complement and innate immune responses in AD-like disease in mice and support the concept that certain inflammatory defense mechanisms in the brain may be beneficial in neurodegenerative disease.


Journal of The American Society of Nephrology | 2007

New Approaches to the Treatment of Dense Deposit Disease

Richard J.H. Smith; Jessy J. Alexander; Paul N. Barlow; Marina Botto; Thomas L. Cassavant; H. Terence Cook; Santiago Rodríguez de Córdoba; Gregory S. Hageman; T. Sakari Jokiranta; William J. Kimberling; John D. Lambris; Lynne D. Lanning; Vicki Levidiotis; Christoph Licht; Hans U. Lutz; Seppo Meri; Matthew C. Pickering; Richard J. Quigg; Angelique L.W.M.M. Rops; David J. Salant; Sanjeev Sethi; Joshua M. Thurman; Hope F. Tully; Sean P. Tully; Johan van der Vlag; Patrick D. Walker; Reinhard Würzner; Peter F. Zipfel

The development of clinical treatment protocols usually relies on evidence-based guidelines that focus on randomized, controlled trials. For rare renal diseases, such stringent requirements can represent a significant challenge. Dense deposit disease (DDD; also known as membranoproliferative glomerulonephritis type II) is a prototypical rare disease. It affects only two to three people per million and leads to renal failure within 10 yr in 50% of affected children. On the basis of pathophysiology, this article presents a diagnostic and treatment algorithm for patients with DDD. Diagnostic tests should assess the alternative pathway of complement for abnormalities. Treatment options include aggressive BP control and reduction of proteinuria, and on the basis of pathophysiology, animal data, and human studies, plasma infusion or exchange, rituximab, sulodexide, and eculizumab are additional options. Criteria for treatment success should be prevention of progression as determined by maintenance or improvement in renal function. A secondary criterion should be normalization of activity levels of the alternative complement pathway as measured by C3/C3d ratios and C3NeF levels. Outcomes should be reported to a central repository that is now accessible to all clinicians. As the understanding of DDD increases, novel therapies should be integrated into existing protocols for DDD and evaluated using an open-label Bayesian study design.


Journal of Neurochemistry | 2008

The complement cascade: Yin–Yang in neuroinflammation – neuro–protection and –degeneration

Jessy J. Alexander; Aileen J. Anderson; Scott R. Barnum; Beth Stevens; Andrea J. Tenner

The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a ‘double edged’ sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self‐tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.


Neurochemistry International | 2008

TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1.

Jessy J. Alexander; Alexander Jacob; Patrick N. Cunningham; Lauren K Hensley; Richard J. Quigg

In this study, we demonstrate that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced encephalopathy. Systemic administration of lipopolysaccharide (LPS) induces a widespread inflammatory response similar to that observed in sepsis. Following LPS administration TNFR1(-/-) mice had less caspase-dependent apoptosis in brain cells and fewer neutrophils infiltrating the brain (p<0.039), compared to control C57Bl6 (TNFR1(+/+)) mice. TNFR1-dependent increase in aquaporin (AQP)-4 mRNA and protein expression was observed with a concomitant increase in water content, in brain (18% increase in C57Bl6 mice treated with LPS versus those treated with saline), similar to cerebral edema observed in sepsis. Furthermore, absence of TNFR1 partially but significantly reduced the activation of astrocytes, as shown by immunofluorescence and markedly inhibited iNOS mRNA expression (p<0.01). Septic encephalopathy is a devastating complication of sepsis. Although, considerable work has been done to identify the mechanism causing the pathological alterations in this setting, the culprit still remains an enigma. Our results demonstrate for the first time that endotoxemia leads to inflammation in brain, with alteration in blood-brain barrier, up-regulation of AQP4 and associated edema, neutrophil infiltration, astrocytosis, as well as apoptotic cellular death, all of which appear to be mediated by TNF-alpha signaling through TNFR1.


Journal of Immunology | 2002

Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice.

Lihua Bao; Mark Haas; Susan A. Boackle; Damian Kraus; Patrick N. Cunningham; Pierce Park; Jessy J. Alexander; Randall K. Anderson; Kristin K. Culhane; V. Michael Holers; Richard J. Quigg

To investigate the role of complement in lupus nephritis, we used MRL/lpr mice and a transgene overexpressing a soluble complement regulator, soluble CR1-related gene/protein y (sCrry), both systemically and in kidney. Production of sCrry in sera led to significant complement inhibition in Crry-transgenic mice relative to littermate transgene negative controls. This complement inhibition with sCrry conferred a survival advantage to MRL/lpr mice. In a total of 154 animals, 42.5% transgene-negative animals had impaired renal function (blood urea nitrogen > 50 mg/dl) compared with 16.4% mice with the sCrry-producing transgene (p < 0.001). In those animals that died spontaneously, MRL/lpr mice with the sCrry-producing transgene did not die of renal failure, while those without the transgene did (blood urea nitrogen values of 46.6 ± 9 and 122 ± 29 mg/dl in transgene-positive and transgene-negative animals, respectively; p < 0.001). Albuminuria was reduced in those transgenic animals in which sCrry expression was maximally stimulated (urinary albumin/creatinine = 12.4 ± 4.3 and 36.9 ± 7.7 in transgene-positive and transgene-negative animals, respectively; p < 0.001). As expected in the setting of chronic complement inhibition, there was less C3 deposition in glomeruli of sCrry-producing transgenic mice compared with transgene-negative animals. In contrast, there was no effect on glomerular IgG deposition, levels of anti-dsDNA Ab and rheumatoid factor, or spleen weights between the two groups. Thus, long-term complement inhibition reduces renal disease in MRL/lpr mice, which translates into improved survival. MRL/lpr mice in which complement is inhibited still have spontaneous mortality, yet this is not from renal disease.


The FASEB Journal | 2010

C5a alters blood-brain barrier integrity in experimental lupus

Alexander Jacob; Bradley K. Hack; Eddie T. Chiang; Joe G. N. Garcia; Richard J. Quigg; Jessy J. Alexander

The blood‐brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ‐Tnfrsf6lpr (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G‐protein‐coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL+/+ mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.—Jacob, A., Hack, B., Chiang, E., Garcia, J. G. N., Quigg, R. J., Alexander, J. J. C5a alters blood‐brain barrier integrity in experimental lupus. FASEB J. 24, 1682–1688 (2010). www.fasebj.org


Journal of Immunology | 2005

Complement-Dependent Apoptosis and Inflammatory Gene Changes in Murine Lupus Cerebritis

Jessy J. Alexander; Alexander Jacob; Lihua Bao; R. Loch Macdonald; Richard J. Quigg

The role of complement activation in the brains of MRL/lpr lupus mice was determined using the potent C3 convertase inhibitor, CR1-related y (Crry), administered both as an overexpressing Crry transgene and as Crry-Ig. Prominent deposition of complement proteins C3 and C9 in brains of MRL/lpr mice was indicative of complement activation and was significantly reduced by Crry. Apoptosis was determined in brain using different independent measures of apoptosis, including TUNEL staining, DNA laddering, and caspase-3 activity, all of which were markedly increased in lupus mice and could be blocked by inhibiting complement with Crry. Complement activation releases inflammatory mediators that can induce apoptosis. The mRNA for potentially proinflammatory proteins such as TNFR1, inducible NO synthase, and ICAM-1 were up-regulated in brains of lupus mice. Crry prevented the increased expression of these inflammatory molecules, indicating that the changes were complement dependent. Furthermore, microarray analysis revealed complement-dependent up-regulation of glutamate receptor (AMPA-GluR) expression in lupus brains, which was also validated for AMPA-GluR1 mRNA and protein. Our results clearly demonstrate that apoptosis is a prominent feature in lupus brains. Complement activation products either directly and/or indirectly through TNFR1, ICAM-1, inducible NO synthase, and AMPA-GluR, all of which were altered in MRL/lpr mouse brains, have the potential to induce such apoptosis. These findings present the exciting possibility that complement inhibition is a therapeutic option for lupus cerebritis.


Journal of The American Society of Nephrology | 2004

Complement factor h limits immune complex deposition and prevents inflammation and scarring in glomeruli of mice with chronic serum sickness.

Jessy J. Alexander; Matthew C. Pickering; Mark Haas; Iyabo Osawe; Richard J. Quigg

Factor H is the major complement regulator in plasma. Abnormalities in factor H have been implicated in membranoproliferative glomerulonephritis in both humans and experimental animals. It has been shown that factor H on rodent platelets functions analogously to human erythrocyte complement receptor 1 in its role to traffic immune complexes to the mononuclear phagocyte system. C57BL/6 factor H-deficient mice (Cfh(-/-)) and wild-type (wt) controls were immunized daily for 5 wk with heterologous apoferritin to study the chronic serum sickness GN model. Immunizations were started in 6- to 8-wk-old mice, which was before the development of spontaneous membranoproliferative glomerulonephritis in some Cfh(-/-) animals. Glomerular deposition of IgG immune complexes in glomeruli was qualitatively and quantitatively increased in Cfh(-/-) mice compared with wt mice. Consistent with the increase in glomerular immune complexes and possibly because of alternative pathway complement activation, Cfh(-/-) mice had increased glomerular C3 deposition. Wt mice developed no glomerular pathology. In contrast, Cfh(-/-) mice developed diffuse proliferative GN with focal crescents and glomerulosclerosis. In addition, there was significantly increased expression of collagen IV, fibronectin, and laminin mRNA in Cfh(-/-) glomeruli. These data show a role for platelet-associated factor H to process immune complexes and limit their accumulation in glomeruli. Once deposited in glomeruli, excessive complement activation can lead to glomerular inflammation and the rapid development of a scarring phenotype.


Neurochemistry International | 2011

Septic encephalopathy: inflammation in man and mouse.

Alexander Jacob; James R. Brorson; Jessy J. Alexander

Septic encephalopathy is a frequent complication of the sepsis syndrome, with no therapies available that can prevent the associated neurological dysfunction in humans. It is caused by a number of processes and networks going awry, the exact cellular and molecular mechanisms of which remain an enigma. Several mediators of inflammation have been assigned a key role in sepsis, including cytokines, chemokines and complement cascade. With the observations that brain dysfunction in a sepsis setting can be alleviated by regulation of the cytokines and complement proteins in various species of animals, optimism is building for a possible therapy of sepsis-damaged brain. This article reviewed the advances in the understanding of the underlying mechanisms causing pathology in SE, with an emphasis on the inflammatory and excitatory mediators such as the cytokines, complement proteins and neurotransmitters, investigating their potential as possible therapeutic targets.


Laboratory Investigation | 2007

The role of the complement cascade in endotoxin-induced septic encephalopathy

Alexander Jacob; Lauren K Hensley; Bryan D Safratowich; Richard J. Quigg; Jessy J. Alexander

The complement system normally eliminates bacteria and has a protective effect. However, in an inflammatory setting such as sepsis, an exaggerated or insufficient activation of this cascade can have deleterious effect through the activation of glial cells, secretion of proinflammatory cytokines and generation of other toxic products. The aim of the present study was to investigate the role of the complement cascade in septic encephalopathy, through the passive injection of endotoxin/lipopolysaccharide (LPS) into mice overexpressing the potent complement inhibitor, CR1-related y (Crry-tg). Increased gliosis occurred in brains of endotoxemic mice. Concomitant with this, there was a significant rise in mRNA expression of GFAP, CD45 and proinflammatory molecules, TLR4, TNF-α and NO, in these brains. Consistent with the capacity of these inflammatory mediators, there was increased apoptosis as determined by DNA fragmentation and TUNEL staining on LPS treatment, which occurred through the Akt pathway. In addition, there was increased water content in brain, similar to cerebral edema observed in sepsis. Relative to wild-type mice, complement-inhibited mice had an attenuated inflammatory response, decreased edema and reduced apoptosis. Therefore, we demonstrate for the first time that the complement cascade appears to be one of the key players that cause brain pathology in an endotoxemic setting and therefore is a viable therapeutic target.

Collaboration


Dive into the Jessy J. Alexander's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Haas

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun He

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Lihua Bao

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Michael Holers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Alice Lim

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge