Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Arenas is active.

Publication


Featured researches published by Jesús Arenas.


Molecular Microbiology | 2013

Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation

Jesús Arenas; Reindert Nijland; Francisco J. Rodriguez; Tom N. P. Bosma; Jan Tommassen

Neisseria meningitidis is a common and usually harmless inhabitant of the mucosa of the human nasopharynx, which, in rare cases, can cross the epithelial barrier and cause meningitis and sepsis. Biofilm formation favours the colonization of the host and the subsequent carrier state. Two different strategies of biofilm formation, either dependent or independent on extracellular DNA (eDNA), have been described for meningococcal strains. Here, we demonstrate that the autotransporter protease NalP, the expression of which is phase variable, affects eDNA‐dependent biofilm formation in N. meningitidis. The effect of NalP was found in biofilm formation under static and flow conditions and was dependent on its protease activity. Cleavage of the heparin‐binding antigen NhbA and the α‐peptide of IgA protease, resulting in the release of positively charged polypeptides from the cell surface, was responsible for the reduction in biofilm formation when NalP is expressed. Both NhbA and the α‐peptide of IgA protease were shown to bind DNA. We conclude that NhbA and the α‐peptide of IgA protease are implicated in biofilm formation by binding eDNA and that NalP is an important regulator of this process through the proteolysis of these surface‐exposed proteins.


BMC Genomics | 2013

Domain exchange at the 3' end of the gene encoding the fratricide meningococcal two-partner secretion protein A.

Jesús Arenas; Kim Schipper; Peter van Ulsen; Arie van der Ende; Jan Tommassen

BackgroundTwo-partner secretion systems in Gram-negative bacteria consist of an outer membrane protein TpsB that mediates the secretion of a cognate TpsA protein into the extracellular milieu. TpsA proteins have diverse, often virulence-related functions, and some of them inhibit the growth of related bacteria. In Neisseria meningitidis, several functions have been attributed to the TpsA proteins. Downstream of the tpsB and tpsA genes, several shorter tpsA-related gene cassettes, called tpsC, are located interspersed with intervening open-reading frames (IORFs). It has been suggested that the tpsC cassettes may recombine with the tpsA gene as a mechanism of antigenic variation. Here, we investigated (i) whether TpsA of N. meningitidis also has growth-inhibitory properties, (ii) whether tpsC cassettes recombine with the tpsA gene, and (iii) what the consequences of such recombination events might be.ResultsWe demonstrate that meningococcal TpsA has growth-inhibitory properties and that the IORF located immediately downstream of tpsA confers immunity to the producing strain. Although bioinformatics analysis suggests that recombination between tpsC cassettes and tpsA occurs, detailed analysis of the tpsA gene in a large collection of disease isolates of three clonal complexes revealed that the frequency is very low and cannot be a mechanism of antigenic variation. However, recombination affected growth inhibition. In vitro experiments revealed that recombination can be mediated through acquirement of tpsC cassettes from the environment and it identified the regions involved in the recombination.ConclusionsMeningococcal TpsA has growth-inhibitory properties. Recombination between tpsA and tpsC cassettes occurs in vivo but is rare and has consequences for growth inhibition. A recombination model is proposed and we propose that the main goal of recombination is the collection of new IORFs for protection against a variety of TpsA proteins.


Clinical and Vaccine Immunology | 2010

Coincorporation of LpxL1 and PagL Mutant Lipopolysaccharides into Liposomes with Neisseria meningitidis Opacity Protein: Influence on Endotoxic and Adjuvant Activity

Jesús Arenas; Harry van Dijken; Betsy Kuipers; Hendrik Jan Hamstra; Jan Tommassen; Peter van der Ley

ABSTRACT Wild-type lipopolysaccharide (LPS) of Neisseria meningitidis normally contains six acyl chains. Penta-acylated LPS forms were generated through inactivation of the lpxL1 gene or through the expression of the Bordetella bronchiseptica pagL gene in N. meningitidis. The resulting LPS species, designated LpxL1 LPS and PagL LPS, respectively, display reduced endotoxic activity compared to wild-type LPS. Here, we determined the adjuvant potential of PagL LPS by comparison with the broadly used LpxL1 LPS. We also investigated the potential benefit for adjuvanticity of coincorporating these LPS species, together with the meningococcal opacity-associated protein OpaJ as a model antigen, in a liposomal delivery system. PagL LPS showed a higher endotoxic activity than LpxL1 LPS, and their incorporation into liposomes significantly reduced their endotoxic activity as determined by measuring the induction of interleukin-6 (IL-6) production in a murine macrophage cell line. To determine the adjuvant effect, BALB/c mice were immunized with OpaJ-containing liposomes and either free LPS or LPS coincorporated into the proteoliposomes. OpaJ-containing liposomes adjuvanted with AlPO4 or not adjuvanted at all were included as control groups. In the appropriate dose, PagL LPS showed a superior adjuvant effect compared with LpxL1 LPS, and for both LPS types, free LPS showed a higher adjuvant effect than when coincorporated into the liposomes, as evidenced by higher titers of IgG2a and IgG2b antibodies against OpaJ+ meningococci and higher bactericidal titers. In conclusion, PagL LPS is a better adjuvant than LpxL1 LPS, but coincorporation of either LPS into proteoliposomes did not improve their adjuvant activity.


Environmental Microbiology | 2015

The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation

Jesús Arenas; Sara Cano; Reindert Nijland; Vérène van Dongen; Lucy Rutten; Arie van der Ende; Jan Tommassen

Autotransporters (ATs) are proteins secreted by Gram-negative bacteria that often play a role in virulence. Eight different ATs have been identified in Neisseria meningitidis, but only six of them have been characterized. AutA is one of the remaining ATs. Its expression remains controversial. Here, we show that the autA gene is present in many neisserial species, but its expression is often disrupted by various genetic features; however, it is expressed in certain strains of N. meningitidis. By sequencing the autA gene in large panels of disease isolates and Western blot analysis, we demonstrated that AutA expression is prone to phase variation at AAGC nucleotide repeats located within the DNA encoding the signal sequence. AutA is not secreted into the extracellular medium, but remains associated with the bacterial cell surface. We further demonstrate that AutA expression induces autoaggregation in a process that, dependent on the particular strain, may require extracellular DNA (eDNA). This property influences the organization of bacterial communities like lattices and biofilms. In vitro assays evidenced that AutA is a self-associating AT that binds DNA. We suggest that AutA-mediated autoaggregation might be particularly important for colonization and persistence of the pathogen in the nasopharynx of the host.


Microbiology | 2014

Variable processing of the IgA protease autotransporter at the cell surface of Neisseria meningitidis

V. Roussel-Jazede; Jesús Arenas; Jeroen D. Langereis; Jan Tommassen; P. van Ulsen

As with all classical monomeric autotransporters, IgA protease of Neisseria meningitidis is a modular protein consisting of an N-terminal signal sequence, a passenger domain and a C-terminal translocator domain (TD) that assists in the secretion of the passenger domain across the outer membrane. The passenger of IgA protease consists of three separate domains: the protease domain, the γ-peptide and the α-peptide that contains nuclear localization signals (NLSs). The protease domain is released into the extracellular milieu either via autocatalytic processing or via cleavage by another autotransporter, NalP, expression of which is phase-variable. NalP-mediated cleavage results in the release of a passenger that includes the α- and γ-peptides. Here, we studied the fate of the α-peptide when NalP was not expressed and observed strain-dependent differences. In meningococcal strains where the α-peptide contained a single NLS, the α-peptide remained covalently attached to the TD and was detected at the cell surface. In other strains, the α-peptide contained four NLSs and was separated from the TD by an IgA protease autoproteolytic cleavage site. In many of those cases, the α-peptide was found non-covalently associated with the cells as a separate polypeptide. The cell surface association of the α-peptides may be relevant physiologically. We report a novel function for the α-peptide, i.e. the binding of heparin - an immune-modulatory molecule that in the host is found in the extracellular matrix and connected to cell surfaces.


Trends in Microbiology | 2017

Meningococcal Biofilm Formation : Let's Stick Together

Jesús Arenas; Jan Tommassen

Extracellular DNA (eDNA) is an essential constituent of the extracellular matrix of biofilms of many microorganisms. In spite of many studies, it has long remained unclear how exactly eDNA exerts its role in biofilm formation. Here, we describe recent advances that have been made in understanding biofilm formation in the human pathogen Neisseria meningitidis. Several cell-surface-exposed proteins have been identified that bind DNA and other negatively charged polymers, such as heparin, by electrostatic interactions. By virtue of these proteins, eDNA can act as an adhesive that binds the bacteria together. We provide examples that indicate that the mechanism of binding eDNA via DNA/heparin-binding proteins is a conserved feature in biofilms of many different microorganisms, including fungi.


BMC Microbiology | 2015

Fratricide activity of MafB protein of N. meningitidis strain B16B6

Jesús Arenas; Vincent de Maat; Laura Catón; Massis Krekorian; Juan Cruz Herrero; Flavio Ferrara; Jan Tommassen

BackgroundNeisseria meningitidis is an inhabitant of the mucosal surfaces of the human nasopharynx. We recently demonstrated that the secreted meningococcal Two-partner secretion protein A (TpsA) is involved in interbacterial competition. The C-terminal end of the large TpsA protein contains a small toxic domain that inhibits the growth of target bacteria. The producing cells are protected from this toxic activity by a small immunity protein that is encoded by the gene immediately downstream of the tpsA gene. Further downstream on the chromosome, a repertoire of toxic modules, designated tpsC cassettes, is encoded that could replace the toxic module of TpsA by recombination. Each tpsC cassette is associated with a gene encoding a cognate immunity protein.ResultsBlast searchers using the toxic domains of TpsA and TpsC proteins as queries identified homologies with the C-terminal part of neisserial MafB proteins, which, for the rest, showed no sequence similarity to TpsA proteins. On the chromosome, mafB genes are part of genomic islands, which include cassettes for additional toxic modules as well as genes putatively encoding immunity proteins. We demonstrate that a MafB protein of strain B16B6 inhibits the growth of a strain that does not produce the corresponding immunity protein. Assays in E. coli confirmed that the C-terminal region of MafB is responsible for toxicity, which is inhibited by the cognate immunity protein. Pull-down assays revealed direct interaction between MafB toxic domains and the cognate immunity proteins.ConclusionsThe meningococcal MafB proteins are novel toxic proteins involved in interbacterial competition.


Antimicrobial Agents and Chemotherapy | 2017

Acquisition of Carbapenem Resistance by Plasmid-Encoded AmpC-Expressing Escherichia coli

Ria van Boxtel; Agnes A. A.A. Wattel; Jesús Arenas; Wil H. F. Goessens; J. Tommassen

ABSTRACT Although AmpC β-lactamases can barely degrade carbapenems, if at all, they can sequester them and prevent them from reaching their targets. Thus, carbapenem resistance in Escherichia coli and other Enterobacteriaceae can result from AmpC production and simultaneous reduction of antibiotic influx into the periplasm by mutations in the porin genes. Here we investigated the route and genetic mechanisms of acquisition of carbapenem resistance in a clinical E. coli isolate carrying blaCMY-2 on a plasmid by selecting for mutants that are resistant to increasing concentrations of meropenem. In the first step, the expression of OmpC, the only porin produced in the strain under laboratory conditions, was lost, leading to reduced susceptibility to meropenem. In the second step, the expression of the CMY-2 β-lactamase was upregulated, leading to resistance to meropenem. The loss of OmpC was due to the insertion of an IS1 element into the ompC gene or to frameshift mutations and premature stop codons in this gene. The blaCMY-2 gene was found to be located on an IncIγ plasmid, and overproduction of the CMY-2 enzyme resulted from an increased plasmid copy number due to a nucleotide substitution in the inc gene. The clinical relevance of these genetic mechanisms became evident from the analysis of previously isolated carbapenem-resistant clinical isolates, which appeared to carry similar mutations.


Frontiers in Cellular and Infection Microbiology | 2016

Expression of the Gene for Autotransporter AutB of Neisseria meningitidis Affects Biofilm Formation and Epithelial Transmigration

Jesús Arenas; Fernanda L. Paganelli; Patricia Rodríguez-Castaño; Sara Cano-Crespo; Arie van der Ende; Jos P. M. van Putten; Jan Tommassen

Neisseria meningitidis is a Gram-negative bacterium that resides as a commensal in the upper respiratory tract of humans, but occasionally, it invades the host and causes sepsis and/or meningitis. The bacterium can produce eight autotransporters, seven of which have been studied to some detail. The remaining one, AutB, has not been characterized yet. Here, we show that the autB gene is broadly distributed among pathogenic Neisseria spp. The gene is intact in most meningococcal strains. However, its expression is prone to phase variation due to slipped-strand mispairing at AAGC repeats located within the DNA encoding the signal sequence and is switched off in the vast majority of these strains. Moreover, various genetic disruptions prevent autB expression in most of the strains in which the gene is in phase indicating a strong selection against AutB synthesis. We observed that autB is expressed in two of the strains examined and that AutB is secreted and exposed at the cell surface. Functionality assays revealed that AutB synthesis promotes biofilm formation and delays the passage of epithelial cell layers in vitro. We hypothesize that this autotransporter is produced during the colonization process only in specific niches to facilitate microcolony formation, but its synthesis is switched off probably to evade the immune system and facilitate human tissue invasion.


Frontiers in Microbiology | 2017

Interstrain Cooperation in Meningococcal Biofilms: Role of Autotransporters NalP and AutA

Jesús Pérez-Ortega; Antonio Rodríguez; Eduardo Ribes; Jan Tommassen; Jesús Arenas

Neisseria meningitidis (Nm) and Neisseria lactamica (Nl) are commensal bacteria that live in the human nasopharynx, where they form microcolonies. In contrast to Nl, Nm occasionally causes blood and/or meningitis infection with often fatal consequences. Here, we studied interactions between neisserial strains during biofilm formation. Fluorescent strains were engineered and analyzed for growth in single- and dual-strain biofilms with confocal laser-scanning microscopy. Different strains of diverse Neisseria species formed microcolonies of different sizes and morphologies. Pair-wise combinations of two invasive Nm strains and one Nm carrier isolate showed that these strains can coexist in spite of the fact that they produce toxins to combat congeners. This lack of competition was even observed when the biofilms were formed under nutrient limitation and can be explained by the observation that the separate microcolonies within mixed biofilms are mostly lineage specific. However, these microcolonies showed different levels of interaction. The coexistence of two strains was also observed in mixed biofilms of Nm and Nl strains. Inactivation of the autotransporter NalP, which prevents the release of the heparin-binding antigen NHBA and the α-peptide of IgA protease from the cell surface, and/or the production of autotransporter AutA increased interactions between microcolonies, as evidenced by close contacts between microcolonies on the substratum. Qualitative and quantitative analysis revealed an altered spatial distribution of each strain in mixed biofilms with consequences for the biomass, biofilm architecture and bacterial viability depending on the synthesis of NalP and AutA, the expression of which is prone to phase variation. Being in a consortium resulted in some cases in commensalism and cooperative behavior, which promoted attachment to the substratum or increased survival, possibly as result of the shared use of the biofilm matrix. We hypothesize that Nm strains can cooperate during host colonization, but, possibly, the different capacities of the microcolonies of each strain to resist the hosts defenses limits the long-term coexistence of strains in the host.

Collaboration


Dive into the Jesús Arenas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnes A. A.A. Wattel

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge