Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesus Cosin-Roger is active.

Publication


Featured researches published by Jesus Cosin-Roger.


Mucosal Immunology | 2016

The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD.

Jesus Cosin-Roger; Dolores Ortiz-Masiá; Sara Calatayud; Carlos Hernández; Juan V. Esplugues; Barrachina

The complete repair of the mucosa constitutes a key goal in inflammatory bowel disease (IBD) treatment. The Wnt signaling pathway mediates mucosal repair and M2 macrophages that coordinate efficient healing have been related to Wnt ligand expression. Signal transducer and activator of transcription 6 (STAT6) mediates M2 polarization in vitro and we hypothesize that a STAT6-dependent macrophage phenotype mediates mucosal repair in acute murine colitis by activating the Wnt signaling pathway. Our results reveal an impaired mucosal expression of M2 macrophage-associated genes and delayed wound healing in STAT6−/− mice treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS). These mice also exhibited decreased mucosal expression of Wnt2b, Wnt7b, and Wnt10a, diminished protein levels of nuclear β-catenin that is mainly located in crypts adjacent to damage, and reduced mRNA expression of two Wnt/β-catenin target molecules Lgr5 and c-Myc when compared with wild-type (WT) mice. Murine peritoneal macrophages treated with interleukin-4 (IL-4) and polarized toward an M2a phenotype overexpressed Wnt2b, Wnt7b, and Wnt10a in a STAT6-dependent manner. Administration of a Wnt agonist as well as transfer of properly polarized M2a macrophages to STAT6−/− mice activated the Wnt signaling pathway in the damaged mucosa and accelerated wound healing. Our results demonstrate that a STAT6-dependent macrophage phenotype promotes mucosal repair in TNBS-treated mice through activation of the Wnt signaling pathway.


Mucosal Immunology | 2014

Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD

Dolores Ortiz-Masiá; Jesus Cosin-Roger; Sara Calatayud; Carlos Hernández; Rafael Alós; Joaquín Hinojosa; Nadezda Apostolova; Angeles Alvarez; M. D. Barrachina

A defective induction of epithelial autophagy may have a role in the pathogenesis of inflammatory bowel diseases. This process is regulated mainly by extracellular factors such as nutrients and growth factors and is highly induced by diverse situations of stress. We hypothesized that epithelial autophagy is regulated by the immune response that in turn is modulated by local hypoxia and inflammatory signals present in the inflamed mucosa. Our results reveal that HIF-1α and Wnt1 were co-localized with CD68 in cells of the mucosa of IBD patients. We have observed increased protein levels of β-catenin, phosphorylated mTOR, and p62 and decreased expression of LC3II in colonic epithelial crypts from damaged mucosa in which β-catenin positively correlated with phosphorylated mTOR and negatively correlated with autophagic protein markers. In cultured macrophages, HIF-1 mediated the increase in Wnt1 expression induced by hypoxia, which enhanced protein levels of β-catenin, activated mTOR, and decreased autophagy in epithelial cells in co-culture. Our results demonstrate a HIF-1-dependent induction of Wnt1 in hypoxic macrophages that undermines autophagy in epithelial cells and suggest a role for Wnt signaling and mTOR pathways in the impaired epithelial autophagy observed in the mucosa of IBD patients.


Inflammatory Bowel Diseases | 2016

Decreased Fibrogenesis After Treatment with Pirfenidone in a Newly Developed Mouse Model of Intestinal Fibrosis.

Remo Meier; Christian Lutz; Jesus Cosin-Roger; Stefania Fagagnini; Gabi Bollmann; Anouk Hünerwadel; Céline Mamie; Silvia Lang; Alexander Tchouboukov; Franz E. Weber; Achim Weber; Gerhard Rogler; Martin Hausmann

Background:Fibrosis as a common problem in patients with Crohns disease is a result of an imbalance toward excessive tissue repair. At present, there is no specific treatment option. Pirfenidone is approved for the treatment of idiopathic pulmonary fibrosis with both antifibrotic and anti-inflammatory effects. We subsequently investigated the impact of pirfenidone treatment on development of fibrosis in a new mouse model of intestinal fibrosis. Methods:Small bowel resections from donor mice were transplanted subcutaneously into the neck of recipients. Animals received either pirfenidone (100 mg/kg, three times daily, orally) or vehicle. Results:After administration of pirfenidone, a significantly decreased collagen layer thickness was revealed as compared to vehicle (9.7 ± 1.0 versus 13.5 ± 1.5 µm, respectively, **P < 0.001). Transforming growth factor–&bgr; and matrix metalloproteinase–9 were significantly decreased after treatment with pirfenidone as confirmed by real-time PCR (0.42 ± 0.13 versus 1.00 ± 0.21 and 0.46 ± 0.24 versus 1.00 ± 0.62 mRNA expression level relative to GAPDH, respectively, *P < 0.05). Significantly decreased transforming growth factor–&bgr; after administration of pirfenidone was confirmed by Western blotting. Conclusion:In our mouse model, intestinal fibrosis can be reliably induced and is developed within 7 days. Pirfenidone partially prevented the development of fibrosis, making it a potential treatment option against Crohns disease–associated fibrosis.


Nature Communications | 2017

Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation

Jesus Cosin-Roger; Simona Simmen; Hassan Melhem; Kirstin Atrott; Isabelle Frey-Wagner; Martin Hausmann; Cheryl de Valliere; Marianne R. Spalinger; Patrick Spielmann; Roland H. Wenger; Jonas Zeitz; Stephan R. Vavricka; Gerhard Rogler; Pedro A Ruiz

Hypoxia regulates autophagy and nucleotide-binding oligomerization domain receptor, pyrin domain containing (NLRP)3, two innate immune mechanisms linked by mutual regulation and associated to IBD. Here we show that hypoxia ameliorates inflammation during the development of colitis by modulating autophagy and mammalian target of rapamycin (mTOR)/NLRP3 pathway. Hypoxia significantly reduces tumor necrosis factor α, interleukin (IL)-6 and NLRP3 expression, and increases the turnover of the autophagy protein p62 in colon biopsies of Crohn’s disease patients, and in samples from dextran sulfate sodium-treated mice and Il-10−/− mice. In vitro, NF-κB signaling and NLRP3 expression are reduced through hypoxia-induced autophagy. We also identify NLRP3 as a novel binding partner of mTOR. Dimethyloxalylglycine-mediated hydroxylase inhibition ameliorates colitis in mice, downregulates NLRP3 and promotes autophagy. We suggest that hypoxia counteracts inflammation through the downregulation of the binding of mTOR and NLRP3 and activation of autophagy.Hypoxia and HIF-1α activation are protective in mouse models of colitis, and the latter regulates autophagy. Here Cosin-Roger et al. show that hypoxia ameliorates intestinal inflammation in Crohn’s patients and murine colitis models by inhibiting mTOR/NLRP3 pathway and promoting autophagy.


Cellular and molecular gastroenterology and hepatology | 2015

Anti-inflammatory function of high-density lipoproteins via autophagy of IκB Kinase

Ragam Gerster; Jyrki J. Eloranta; Martin Hausmann; Pedro A Ruiz; Jesus Cosin-Roger; Anne Terhalle; Urs Ziegler; Gerd A. Kullak-Ublick; Arnold von Eckardstein; Gerhard Rogler

Background & Aims Plasma levels of high-density lipoprotein (HDL) cholesterol are frequently found decreased in patients with inflammatory bowel disease (IBD). Therefore, and because HDL exerts anti-inflammatory activities, we investigated whether HDL and its major protein component apolipoprotein A-I (apoA-I) modulate mucosal inflammatory responses in vitro and in vivo. Methods The human intestinal epithelial cell line T84 was used as the in vitro model for measuring the effects of HDL on the expression and secretion of tumor necrosis factor (TNF), interleukin-8 (IL-8), and intracellular adhesion molecule (ICAM). Nuclear factor-κB (NF-κB)-responsive promoter activity was studied by dual luciferase reporter assays. Mucosal damage from colitis induced by dextran sodium sulphate (DSS) and 2,4,6-trinitrobenzenesulfonic acid (TNBS) was scored by colonoscopy and histology in apoA-I transgenic (Tg) and apoA-I knockout (KO) and wild-type (WT) mice. Myeloperoxidase (MPO) activity and TNF and ICAM expression were determined in intestinal tissue samples. Autophagy was studied by Western blot analysis, immunofluorescence, and electron microscopy. Results HDL and apoA-I down-regulated TNF-induced mRNA expression of TNF, IL-8, and ICAM, as well as TNF-induced NF-κB-responsive promoter activity. DSS/TNBS-treated apoA-I KO mice displayed increased mucosal damage upon both colonoscopy and histology, increased intestinal MPO activity and mRNA expression of TNF and ICAM as compared with WT and apoA-I Tg mice. In contrast, apoA-I Tg mice showed less severe symptoms monitored by colonoscopy and MPO activity in both the DSS and TNBS colitis models. In addition, HDL induced autophagy, leading to recruitment of phosphorylated IκB kinase to the autophagosome compartment, thereby preventing NF-κB activation and induction of cytokine expression. Conclusions Taken together, the in vitro and in vivo findings suggest that HDL and apoA-I suppress intestinal inflammation via autophagy and are potential therapeutic targets for the treatment of IBD.


Cellular and molecular gastroenterology and hepatology | 2016

Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein–Coupled Receptor OGR1 (GPR68)

Cheryl de Valliere; Jesus Cosin-Roger; Simona Simmen; Kirstin Atrott; Hassan Melhem; Jonas Zeitz; Mehdi Madanchi; Irina Tcymbarevich; Michael Fried; Gerd A. Kullak-Ublick; Stephan R. Vavricka; Benjamin Misselwitz; Klaus Seuwen; Carsten A. Wagner; Jyrki J. Eloranta; Gerhard Rogler; Pedro A Ruiz

Background & Aims A novel family of proton-sensing G-protein–coupled receptors, including ovarian cancer G-protein–coupled receptor 1 (OGR1) (GPR68) has been identified to play a role in pH homeostasis. Hypoxia is known to change tissue pH as a result of anaerobic glucose metabolism through the stabilization of hypoxia-inducible factor-1α. We investigated how hypoxia regulates the expression of OGR1 in the intestinal mucosa and associated cells. Methods OGR1 expression in murine tumors, human colonic tissue, and myeloid cells was determined by quantitative reverse-transcription polymerase chain reaction. The influence of hypoxia on OGR1 expression was studied in monocytes/macrophages and intestinal mucosa of inflammatory bowel disease (IBD) patients. Changes in OGR1 expression in MonoMac6 (MM6) cells under hypoxia were determined upon stimulation with tumor necrosis factor (TNF), in the presence or absence of nuclear factor-κB (NF-κB) inhibitors. To study the molecular mechanisms involved, chromatin immunoprecipitation analysis of the OGR1 promoter was performed. Results OGR1 expression was significantly higher in tumor tissue compared with normal murine colon tissue. Hypoxia positively regulated the expression of OGR1 in MM6 cells, mouse peritoneal macrophages, primary human intestinal macrophages, and colonic tissue from IBD patients. In MM6 cells, hypoxia-enhanced TNF-induced OGR1 expression was reversed by inhibition of NF-κB. In addition to the effect of TNF and hypoxia, OGR1 expression was increased further at low pH. Chromatin immunoprecipitation analysis showed that HIF-1α, but not NF-κB, binds to the promoter of OGR1 under hypoxia. Conclusions The enhancement of TNF- and hypoxia-induced OGR1 expression under low pH points to a positive feed-forward regulation of OGR1 activity in acidic conditions, and supports a role for OGR1 in the pathogenesis of IBD.


Oncotarget | 2015

Mutant HRAS as novel target for MEK and mTOR inhibitors

Michael K. Kiessling; Alessandra Curioni-Fontecedro; Panagiotis Samaras; Kirstin Atrott; Jesus Cosin-Roger; Silvia Lang; Michael Scharl; Gerhard Rogler

HRAS is a frequently mutated oncogene in cancer. However, mutant HRAS as drug target has not been investigated so far. Here, we show that mutant HRAS hyperactivates the RAS and the mTOR pathway in various cancer cell lines including lung, bladder and esophageal cancer. HRAS mutation sensitized toward growth inhibition by the MEK inhibitors AZD6244, MEK162 and PD0325901. Further, we found that MEK inhibitors induce apoptosis in mutant HRAS cell lines but not in cell lines lacking RAS mutations. In addition, knockdown of HRAS by siRNA blocked cell growth in mutant HRAS cell lines. Inhibition of the PI3K pathway alone or in combination with MEK inhibitors did not alter signaling nor had an impact on viability. However, inhibition of mTOR or combined inhibition of MEK and mTOR reduced cell growth in a synergistic manner. Finally, Ba/F3 cells transformed with mutant HRAS isoforms Q61L, Q61R and G12V demonstrated equal sensitivity towards MEK and mTOR inhibition. Our results show that HRAS mutations in cancer activate the RAS and mTOR pathways which might serve as a therapeutic option for patients with HRAS mutant tumors.


Journal of Crohns & Colitis | 2017

Prdx6 Deficiency Ameliorates DSS Colitis: Relevance of Compensatory Antioxidant Mechanisms

Hassan Melhem; Marianne R. Spalinger; Jesus Cosin-Roger; Kirstin Atrott; Silvia Lang; Kacper A. Wojtal; Stephan R. Vavricka; Gerhard Rogler; Isabelle Frey-Wagner

Background and Aims An imbalance between cellular antioxidant defence system[s] and reactive oxygen species [ROS]-driven oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease. Peroxiredoxin [PRDX] 6 contributes to an appropriate redox balance by clearing ROS and reducing peroxidized membrane phospholipids. We here studied the role of PRDX6 in acute and chronic dextran sodium sulphate [DSS]-induced colitis. Methods To investigate the impact of PRDX6 on intestinal inflammation, we used wild type [WT], Prdx6 knock-out mice [Prdx6-/-] and transgenic mice [Prdx6tg/tg], overexpressing Prdx6. Acute and chronic colitis was induced by DSS in WT, Prdx6-/- and Prdx6tg/tg mice. Colitis was evaluated by endoscopy, colon length, histopathological assessment and myeloperoxidase [MPO] activity. Changes in mRNA and protein expression of pro-inflammatory cytokines and antioxidant enzymes were evaluated by real-time quantitative polymerase chain reaction [RT-qPCR] and western blot. Total glutathione [GSH] levels in colon samples were determined. Results Prdx6-/- mice exposed to acute and chronic DSS showed a significant decrease in the clinical parameters and in colonic expression of pro-inflammatory cytokines compared with WT mice. mRNA expression of antioxidant enzymes in colon samples was significantly increased in Prdx6-/- compared with WT mice exposed to acute and chronic DSS. In addition, total GSH levels were increased in Prdx6-/- mice treated with DSS in comparison with WT. Overexpression of Prdx6 did not significantly influence acute and chronic colitis. Conclusions Our data indicate that a lack of the antioxidant enzyme PRDX6 protects against the development of acute and chronic experimental colitis and is associated with increased expression and function of other antioxidant enzymes, suggesting effective compensatory mechanisms.


PLOS ONE | 2018

Gp96 deficiency affects TLR4 functionality and impairs ERK and p38 phosphorylation

Jesus Cosin-Roger; Marianne R. Spalinger; Pedro A. Ruiz; Claudia Stanzel; Anne Terhalle; Lutz Wolfram; Hassan Melhem; Kirstin Atrott; Silvia Lang; Isabelle Frey-Wagner; Michael Fried; Michael Scharl; Martin Hausmann; Gerhard Rogler

Gp96 is an endoplasmic reticulum chaperone for multiple protein substrates. Its lack in intestinal macrophages of Crohn’s disease (CD) patients is correlated with loss of tolerance against the host gut flora. Gp96 has been stablished to be an essential chaperone for Toll-like receptors (TLRs). We studied the impact of gp96-knockdown on TLR-function in macrophages. TLR2 and TLR4 expression was only decreased but not abolished when gp96 was knocked-down in cell lines, whereas in a monocyte/macrophage specific knock-out mouse model (LysMCre) TLR4 was abolished, while TLR2 was still present. Lipopolysaccharide (LPS)-induced NF-κB activation was still observed in the absence of gp96, and gp96-deficient macrophages were able to up-regulate surface TLR4 upon LPS treatment, suggesting that there is another chaperone involved in the folding of TLR4 upon stress responses. Moreover, LPS-dependent pro-inflammatory cytokines were still expressed, although to a lesser extent in the absence of gp96, which reinforces the fact that gp96 is involved in regulating signaling cascades downstream of TLR4 are impaired upon loss of gp96. In addition, we have also found a reduced phosphorylation of ERK and p38 kinases and an impaired response upon CSF1R activation in gp96 deficient macrophages. Our findings indicate that the loss of gp96 not only impairs TLR4 signaling, but is also associated with a diminished phosphorylation of ERK and mitogen-activated stress kinases resulting in an impaired signalling through several receptors, including CSF1R.


Mucosal Immunology | 2018

Succinate receptor mediates intestinal inflammation and fibrosis

D.C. Macias-Ceja; Dolores Ortiz-Masiá; Pedro Salvador; L. Gisbert-Ferrándiz; Carlos Hernández; Martin Hausmann; Gerhard Rogler; Juan V. Esplugues; Joaquín Hinojosa; Rafael Alós; Francisco Navarro; Jesus Cosin-Roger; Sara Calatayud; M. D. Barrachina

Succinate, an intermediate of the tricarboxylic acid cycle, is accumulated in inflamed areas and its signaling through succinate receptor (SUCNR1) regulates immune function. We analyze SUCNR1 expression in the intestine of Crohns disease patients and its role in murine intestinal inflammation and fibrosis. We show that both serum and intestinal succinate levels and SUCNR1 expression in intestinal surgical resections were higher in CD patients than in controls. SUCNR1 co-localized with CD86, CD206, and α-SMA+ cells in human intestine and we found a positive and significant correlation between SUCNR1 and α-SMA expression. In human isolated fibroblasts from CD patients SUCNR1 expression was higher than in those from controls and treatment with succinate increased SUCNR1 expression, fibrotic markers and inflammatory cytokines through SUCNR1. This receptor modulated the expression of pro-inflammatory cytokines in resting murine macrophages, macrophage polarization and fibroblast activation and Sucnr1−/− mice were protected against both acute TNBS-colitis and intestinal fibrosis induced by the heterotopic transplant of colonic tissue. We demonstrate increased succinate levels in serum and SUCNR1 expression in intestinal tissue of CD patients and show a role for SUCNR1 in murine intestinal inflammation and fibrosis.

Collaboration


Dive into the Jesus Cosin-Roger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge