Jesús Gómez-Zurita
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesús Gómez-Zurita.
Science | 2007
Toby Hunt; Johannes Bergsten; Zuzana Levkaničová; Anna Papadopoulou; Oliver St. John; Ruth Wild; Peter M. Hammond; Dirk Ahrens; Michael Balke; Michael S. Caterino; Jesús Gómez-Zurita; Ignacio Ribera; Timothy G. Barraclough; Milada Bocakova; Ladislav Bocak; Alfried P. Vogler
Beetles represent almost one-fourth of all described species, and knowledge about their relationships and evolution adds to our understanding of biodiversity. We performed a comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900 species, representing more than 80% of the worlds recognized beetle families. We defined basal relationships in the Polyphaga supergroup, which contains over 300,000 species, and established five families as the earliest branching lineages. By dating the phylogeny, we found that the success of beetles is explained neither by exceptional net diversification rates nor by a predominant role of herbivory and the Cretaceous rise of angiosperms. Instead, the pre-Cretaceous origin of more than 100 present-day lineages suggests that beetle species richness is due to high survival of lineages and sustained diversification in a variety of niches.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009
José A. Jurado-Rivera; Alfried P. Vogler; Chris A. M. Reid; Eduard Petitpierre; Jesús Gómez-Zurita
Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions.
PLOS ONE | 2007
Jesús Gómez-Zurita; Toby Hunt; Fatos Kopliku; Alfried P. Vogler
Background The great diversity of the “Phytophaga” (weevils, longhorn beetles and leaf beetles) has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion. Methodology A phylogenetic analysis of the leaf beetles (Chrysomelidae) was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA) including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary) leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini. Principal Findings The origin of the Chrysomelidae was dated to 73–79 Mya (confidence interval 63–86 Mya), and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous) angiosperm lineage. Conclusions Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.
BMC Evolutionary Biology | 2012
Carmelo Andújar; José Serrano; Jesús Gómez-Zurita
BackgroundRates of molecular evolution are known to vary across taxa and among genes, and this requires rate calibration for each specific dataset based on external information. Calibration is sensitive to evolutionary model parameters, partitioning schemes and clock model. However, the way in which these and other analytical aspects affect both the rates and the resulting clade ages from calibrated phylogenies are not yet well understood. To investigate these aspects we have conducted calibration analyses for the genus Carabus (Coleoptera, Carabidae) on five mitochondrial and four nuclear DNA fragments with 7888 nt total length, testing different clock models and partitioning schemes to select the most suitable using Bayes Factors comparisons.ResultsWe used these data to investigate the effect of ambiguous character and outgroup inclusion on both the rates of molecular evolution and the TMRCA of Carabus. We found considerable variation in rates of molecular evolution depending on the fragment studied (ranging from 5.02% in cob to 0.26% divergence/My in LSU-A), but also on analytical conditions. Alternative choices of clock model, partitioning scheme, treatment of ambiguous characters, and outgroup inclusion resulted in rate increments ranging from 28% (HUWE1) to 1000% (LSU-B and ITS2) and increments in the TMRCA of Carabus ranging from 8.4% (cox1-A) to 540% (ITS2). Results support an origin of the genus Carabus during the Oligocene in the Eurasian continent followed by a Miocene differentiation that originated all main extant lineages.ConclusionsThe combination of several genes is proposed as the best strategy to minimise both the idiosyncratic behaviors of individual markers and the effect of analytical aspects in rate and age estimations. Our results highlight the importance of estimating rates of molecular evolution for each specific dataset, selecting for optimal clock and partitioning models as well as other methodological issues potentially affecting rate estimation.
Molecular Ecology | 2000
Jesús Gómez-Zurita; E. Petitpierre; Carlos Juan
The Timarcha goettingensis complex is a monophyletic assemblage of closely related leaf beetles (Chrysomelidae), distributed from the north half of the Iberian Peninsula to Central Europe. Oligophagy, mountainous habitat and apterism are factors which are assumed to promote speciation in these beetles. We have used cytochrome oxidase subunit II mitochondrial DNA genealogies obtained from 31 sampling localities and a nested geographical distance analysis to assess the population structure and demographic factors explaining the geographical distributions of the mtDNA haplotypes in the T. goettingensis complex. The results show that there is a significant association between genetic structuring and geography. Inferences about the historical population processes in the species complex are discussed, being in general in accordance with contiguous range expansions and past fragmentations. The use of the cohesion species concept approach suggests the existence of several systematic ranks among the different T. goettingensis populations, which is in part supported by ecological traits such as trophic selection and altitudinal distribution.
Cladistics | 2008
Jesús Gómez-Zurita; Toby Hunt; Alfried P. Vogler
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (≈ 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model‐based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST‐based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal “sagrine” clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the “eumolpine” (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus “chrysomeline” (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae.
Evolution | 2006
Jesús Gómez-Zurita; Daniel J. Funk; Alfried P. Vogler
Abstract Interspecific hybridization is a well‐established cause of unisexual origins in vertebrates. This mechanism is also suspected in other apomictic taxa, but compelling evidence is rare. Here, we evaluate this mechanism and other hypotheses for the evolutionary origins of unisexuality through an investigation of Calligrapha leaf beetles. This group provides an intriguing subject for studies of unisexual evolution because it presents a rare insect example of multiple apomictic thelytokous species within a primarily bisexual genus. To investigate unisexual evolution, this study conducts the first molecular systematic analysis of Calligrapha. This involved the collection and analysis of about 3000 bp of DNA sequences‐representing RNA and protein‐coding loci from mitochondrial and nuclear genomes‐from 54 specimens of 25 Calligrapha species, including four unisexual tetraploid taxa. Phylogenetic and molecular clock analyses indicated independent and single evolutionary origins of each of these unisexual species during the Pleistocene. Significant phylogenetic incongruence was detected between mitochondrial and nuclear datasets and found to be especially associated with the asexual taxa. This pattern is expected when unisexual lineages arise via interspecific hybridization and thus represent genetic mosaics that possess certain nuclear alleles from the paternal species lineage and mitochondrial DNA (mtDNA) alleles from the maternal parent. Analyzing the mtDNA and nuclear relatedness of unisexuals with corresponding haplotypes of bisexual Calligrapha species allowed the putative identification of these maternal and paternal species lineages for each unisexual species. Strong phenotypic similarities between unisexual taxa and their paternal parent species supported a model that involves both backcrosses of interspecific hybrids with a paternal parent and unreduced gametes. This model accounts for the origins of apomixis, polyploidy, and an overrepresentation of paternal nuclear alleles (and associated phenotypes) in unisexuals. This model is also consistent with the tetraploid karyotypes of unisexual Calligrapha, in which three sets of chromosomes (of presumed paternal ancestry) are quite morphologically homogeneous compared to the fourth. Especially intriguing was a consistent association of unisexual species with the host plant of the paternal parent but never with the maternal host. The statistical implausibility of these patterns occurring by chance further supports our inference of parental species. Moreover, it points to a potentially critical role for host‐association in the formation and preservation of unisexual lineages. These findings suggest that ecological factors are critical for the diversification of unisexual as well as bisexual taxa and thus point out new research directions in the area of ecological speciation.
Insect Molecular Biology | 2002
Kosmas Theodorides; A. De Riva; Jesús Gómez-Zurita; Peter G. Foster; Alfried P. Vogler
Relatively little is known about Coleoptera genes and genomes and how these compare in different taxa. We describe here the construction, DNA sequencing and sequence comparisons of cDNA libraries from seven beetle species. A total of 6717 bacterial colonies were screened for cDNA insert containing plasmids and 2784 size selected clones were 5′‐ and 3′‐end sequenced to produce 1620 assembled sequences. Similarity comparisons with existing protein sequence databases revealed that 65.1% had matches (E < 10−4) in other organisms, with greater numbers of matches in Drosophila melanogaster than Caenorhabditis elegans and Saccharomyces cerevisiae databases. tBlastX comparisons also revealed numerous similarity hits (E < 10−20) in intra‐ and interlibrary comparisons. These results show the potential of small cDNA libraries for discovery and comparative analysis of genes useful for phylogenomic and functional studies.
Molecular Ecology | 2012
Marco Gebiola; Jesús Gómez-Zurita; Maurilia M. Monti; P. Navone; Umberto Bernardo
Integrative taxonomy is a recently developed approach that uses multiple lines of evidence such as molecular, morphological, ecological and geographical data to test species limits, and it stands as one of the most promising approaches to species delimitation in taxonomically difficult groups. The Pnigalio soemius complex (Hymenoptera: Eulophidae) represents an interesting taxonomical and ecological study case, as it is characterized by a lack of informative morphological characters, deep mitochondrial divergence, and is susceptible to infection by parthenogenesis‐inducing Rickettsia. We tested the effectiveness of an integrative taxonomy approach in delimiting species within the P. soemius complex. We analysed two molecular markers (COI and ITS2) using different methods, performed multivariate analysis on morphometric data and exploited ecological data such as host–plant system associations, geographical separation, and the prevalence, type and effects of endosymbiont infection. The challenge of resolving different levels of resolution in the data was met by setting up a formal procedure of data integration within and between conflicting independent lines of evidence. An iterative corroboration process of multiple sources of data eventually indicated the existence of several cryptic species that can be treated as stable taxonomic hypotheses. Furthermore, the integrative approach confirmed a trend towards host specificity within the presumed polyphagous P. soemius and suggested that Rickettsia could have played a major role in the reproductive isolation and genetic diversification of at least two species.
Journal of Evolutionary Biology | 2003
Jesús Gómez-Zurita; Alfried P. Vogler
Phylogeographic analyses have mostly been based on single‐gene genealogies but it is unclear how conclusions from such studies depend on the choice of gene markers. We conducted a nested geographical clade analysis [A.R. Templeton, E. Routman & C.A. Phillips (1995) Genetics140: 767–782] based on nuclear rDNA internal transcribed spacer region 2 (ITS2) sequences in the Timarcha goettingensis species complex (Coleoptera, Chrysomelidae), and compared the inferences with an updated version of previously published results using mitochondrial cytochrome oxidase II (COII) sequences. Inferences from ITS2 suggest that patterns of marker distribution are mostly explained by restricted gene flow with isolation by distance. In contrast, COII revealed a history of geographical structure resulting from episodic population contiguous‐range expansions. Both markers also show different genealogical patterns, which are associated to the effects of genetic introgression in a putative hybrid zone between two major lineages in the complex. Altogether, these differences are attributed to distinct population and/or evolutionary dynamics of the markers, and offer a more accurate phylogeographic description for the T. goettingensis complex.