Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús J. López-Peñalver is active.

Publication


Featured researches published by Jesús J. López-Peñalver.


Water Research | 2009

Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment.

M. Sánchez-Polo; Jesús J. López-Peñalver; G. Prados-Joya; M.A. Ferro-García; J. Rivera-Utrilla

The main objectives of this study were: (1) to investigate the decomposition and mineralization of nitroimidazoles (Metronidazole [MNZ], Dimetridazole [DMZ], and Tinidazole [TNZ]) in waste and drinking water using gamma irradiation; (2) to study the decomposition kinetics of these nitroimidazoles; and (3) to evaluate the efficacy of nitroimidazole removal using radical promoters and scavengers. The results obtained showed that nitroimidazole concentrations decreased with increasing absorbed dose. No differences in irradiation kinetic constant were detected for any nitroimidazole studied (0.0014-0.0017 Gy(-1)). The decomposition yield was higher under acidic conditions than in neutral and alkaline media. Results obtained showed that, at appropriate concentrations, H(2)O(2) accelerates MNZ degradation by generating additional HO(); however, when the dosage of H(2)O(2) exceeds the optimal concentration, the efficacy of MNZ degradation is reduced. The presence of t-BuOH (HO() radical scavenger) and thiourea (HO(), H() and e(aq)(-) scavenger) reduced the MNZ irradiation rate, indicating that degradation of this pollutant can take place via two pathways: oxidation by HO() radicals and reduction by e(aq)(-) and H(). MNZ removal rate was slightly lower in subterranean and surface waters than in ultrapure water and was markedly lower in wastewater. Regardless of the water chemical composition, MNZ gamma irradiation can achieve i) a decrease in the concentration of dissolved organic carbon, and ii) a reduction in the toxicity of the system with higher gamma absorbed dose.


BMC Cancer | 2014

ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

Joaquina Martínez-Galán; Blanca Torres-Torres; M. I. Núñez; Jesús J. López-Peñalver; Rosario Del Moral; José Mariano Ruiz de Almodóvar; Salomón Menjón; Angel Concha; Clara Chamorro; Sandra Ríos; J.R. Delgado

BackgroundTumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients.MethodsPatients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique).ResultsOur results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively.ConclusionSilencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment.


Journal of Hazardous Materials | 2012

Optimization of the preparation process of biological sludge adsorbents for application in water treatment

C.V. Gómez-Pacheco; J. Rivera-Utrilla; M. Sánchez-Polo; Jesús J. López-Peñalver

The objective of this study was to optimize the preparation of treatment plant wastewater sludge adsorbents for application in water treatment. The optimal adsorption capacity was obtained with adsorbents prepared by pyrolysis at 700°C for 3h. We studied the effect of binder type on the adsorbents, finding that their textural properties were not substantially affected by the addition of phenolic resins but their surface area was reduced by the presence of clayey soil. Analysis of the composition of surface groups in these materials revealed: (i) a high concentration of basic surface groups in non-activated pyrolyzed sludge, (ii) an increase in the concentration of basic surface groups after chemical activation, (iii) no modification in the concentration of carboxyl or basic groups with the addition of binding agent before the activation, and (iv) total disappearance of carbonyl groups from sample surfaces with the addition of humic acid or clayey soil as binder. All these adsorbents had a low C content. The capacity of these sludge-derived materials to adsorb methylene blue, 2,4-dichlorophenol, tetracycline, and (Cd(II)) was studied. Their adsorption capacity was considerably increased by the chemical activation but reduced by the pre-activation addition of a binding agent (humic acid, phenolic resin, and clayey soil).


Radiotherapy and Oncology | 2012

The importance of bystander effects in radiation therapy in melanoma skin-cancer cells and umbilical-cord stromal stem cells

Jaime Gomez-Millan; Iana Suly Santos Katz; Virgínea de Araújo Farias; Jose-Luis Linares-Fernández; Jesús J. López-Peñalver; Gustavo Ortiz-Ferrón; Carmen Ruiz-Ruiz; Francisco Javier Oliver; José Mariano Ruiz de Almodóvar

PURPOSE To examine direct and bystander radiation-induced effects in normal umbilical-cord stromal stem cell (HCSSC) lines and in human cancer cells. MATERIALS AND METHODS The UCSSC lines used in this study were obtained in our laboratory. Two cell lines (UCSSC 35 and UCSSC 37) and two human melanoma skin-cancer cells (A375 and G361) were exposed to ionizing radiation to measure acute radiation-dosage cell-survival curves and radiation-induced bystander cell-death response. Normal cells, although extremely sensitive to ionizing radiation, were resistant to the bystander effect whilst tumor cells were sensitive to irradiated cell-conditioned media, showing a dose-response relationship that became saturated at relatively low doses. We applied a biophysical model to describe bystander cell-death through the binding of a ligand to the cells. This model allowed us to calculate the maximum cell death (χ(max)) produced by the bystander effect together with its association constant (K(By)) in terms of dose equivalence (Gy). The values obtained for K(By) in A375 and G361 cells were 0.23 and 0.29 Gy, respectively. CONCLUSION Our findings help to understand how anticancer therapy could have an additional decisive effect in that the response of sub-lethally hit tumor cells to damage might be required for therapy to be successful because the survival of cells communicating with irradiated cells is reduced.


Cancer Letters | 2015

Direct and bystander radiation effects: a biophysical model and clinical perspectives.

Pedro C. Lara; Jesús J. López-Peñalver; Virgínea de Araújo Farias; M. Carmen Ruiz-Ruiz; Francisco Javier Oliver; José Mariano Ruiz de Almodóvar

In planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury. The initial radiation-induced damage to DNA may be a biological indicator of the quantity of energy transferred to the DNA. However, until now the biophysical models proposed cannot explain either the early or the late adverse effects of radiation, and a more general theory appears to be required. The bystander component of tumor cell death after radiotherapy measured in many experimental works highlights the importance of confirming these observations in a clinical situation.


Oncotarget | 2015

Human mesenchymal stem cells enhance the systemic effects of radiotherapy

Virgínea de Araújo Farias; Francisco O’Valle; Borja Alonso Lerma; Carmen Ruiz de Almodovar; Jesús J. López-Peñalver; Ana Nieto; Ana Santos; Beatriz Irene Fernández; Ana Guerra-Librero; María Del Carmen Ruiz-Ruiz; Damián Guirado; Thomas Schmidt; Francisco Javier Oliver; José Mariano Ruiz de Almodóvar

The outcome of radiotherapy treatment might be further improved by a better understanding of individual variations in tumor radiosensitivity and normal tissue reactions, including the bystander effect. For many tumors, however, a definitive cure cannot be achieved, despite the availablity of more and more effective cancer treatments. Therefore, any improvement in the efficacy of radiotherapy will undoubtedly benefit a significant number of patients. Many experimental studies measure a bystander component of tumor cell death after radiotherapy, which highlights the importance of confirming these observations in a preclinical situation. Mesenchymal stem cells (MSCs) have been investigated for use in the treatment of cancers as they are able to both preferentially home onto tumors and become incorporated into their stroma. This process increases after radiation therapy. In our study we show that in vitro MSCs, when activated with a low dose of radiation, are a source of anti-tumor cytokines that decrease the proliferative activity of tumor cells, producing a potent cytotoxic synergistic effect on tumor cells. In vivo administration of unirradiated mesenchymal cells together with radiation leads to an increased efficacy of radiotherapy, thus leading to an enhancement of short and long range bystander effects on primary-irradiated tumors and distant-non-irradiated tumors. Our experiments indicate an increased cell loss rate and the decrease in the tumor cell proliferation activity as the major mechanisms underlying the delayed tumor growth and are a strong indicator of the synergistic effect between RT and MSC when they are applied together for tumor treatment in this model.


Science of The Total Environment | 2016

Halide removal from aqueous solution by novel silver-polymeric materials.

Polo A.M.S.; I. Velo-Gala; M. Sánchez-Polo; U von Gunten; Jesús J. López-Peñalver; J. Rivera-Utrilla

The objective of this study was to analyze the behavior of a new material, silver-doped polymeric cloth (Ag-cloth), in the removal of bromide and iodide from waters. Silver is immobilized on the cloth, guaranteeing selective adsorption of the halide ions as retained silver halides that therefore do not pass into the solution. Results indicate that Ag0 reacts with H2O2 in the first phases of the process, yielding Ag+ and superoxide radical; however, as the process advances, this radical favors Ag+ reduction. Increases in the concentration of H2O2 augment the capacity of the Ag-cloth to remove halides from the medium up to a maximum concentration (55μM), above which the removal capacity remains constant (Xm≅1.3-1.8mg halide/g Ag-cloth). Thus, when there is excess H2O2 in the medium, secondary competitive reactions that take place in the process guarantee a constant Ag+ concentration, which defines the maximum adsorption capacity of Ag-cloth, reducing its ability to remove halides. Ag-cloth has a higher capacity to remove iodide than bromide, and the presence of organic matter or chloride reduces its capacity to remove iodide or bromide from water. The results obtained shown that the capacity of Ag0 with H2O2 significantly varies as a function of the medium pH from 1mg Br-/g Ag-cloth at very low pH to 1.6mg/g Ag-cloth at pH9.


Journal of Materials Chemistry B | 2013

Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth

Virgínea de Araújo Farias; Jesús J. López-Peñalver; Julia Sirés-Campos; M.V. López-Ramón; Carlos Moreno-Castilla; Francisco Javier Oliver; José Mariano Ruiz de Almodóvar

We have investigated the capacity of activated carbon cloth to support the growth and differentiation of human mesenchymal umbilical-cord stromal stem cells. Our results demonstrate that this scaffold provides suitable conditions for the development of cell-derived matrix proteins and facilitates the growth of undifferentiated stem cells with the ability to induce osteogenic and chondrogenic differentiation. Immunoflourescence staining revealed extensive expression of collagen in all the samples, and collagen type II and osteopontin within the samples cultivated in specific differentiation-inducing media. Cell growth and the formation of natural collagen, calcium-magnesium carbonate and hydroxyapatite crystals, together with the self-assemblage of collagen to produce suprafibrillar arrangements of fibrils all occur simultaneously and can be studied together ex vivo under physiological conditions. Furthermore, the spontaneous differentiation of stem cells cultured on activated carbon cloth with no osteogenic supplements opens up new possibilities for bone-tumour engineering and treatment of traumatic and degenerative bone diseases.


Science of The Total Environment | 2016

Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation.

J. Rivera-Utrilla; Mahmoud M. Abdel daiem; M. Sánchez-Polo; R. Ocampo-Pérez; Jesús J. López-Peñalver; I. Velo-Gala; Antonio J. Mota

Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO), hydrated electron (eaq(-)) and hydrogen atom (H) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds.


Science of The Total Environment | 2017

Halide removal from waters by silver nanoparticles and hydrogen peroxide

A.M.S. Polo; Jesús J. López-Peñalver; J. Rivera-Utrilla; U. Von Gunten; M. Sánchez-Polo

The objective of this study was to remove halides from waters by silver nanoparticles (AgNPs) and hydrogen peroxide (H2O2). The experimental parameters were optimized and the mechanism involved was also determined. The AgNP/H2O2 process proved efficacious for bromide and chloride removal from water through the selective precipitation of AgCl and AgBr on the AgNP surface. The optimal AgNP and H2O2 concentrations to be added to the solution were determined for the halide concentrations under study. The removal of Cl- and Br- anions was more effective at basic pH, reaching values of up to 100% for both ions. The formation of OH, O2-, radicals was detected during the oxidation of Ag(0) into Ag(I), determining the reaction mechanism as a function of solution pH. Moreover, the results obtained show that: i) the efficacy of the oxidation of Ag(0) into Ag(I) is higher at pH11, ii) AgNPs can be generated by the O2- radical formation, and iii) the presence of NaCl and dissolved organic matter (tannic acid [TAN]) on the solution matrix reduces the efficacy of bromide removal from the medium due to: i) precipitation of AgCl on the AgNP surface, and ii) the radical scavenger capacity of TAN. AgNPs exhausted can be regenerated by using UV or solar light, and toxicity test results show that AgNPs inhibit luminescence of Vibrio fischeri bacteria.

Collaboration


Dive into the Jesús J. López-Peñalver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ocampo-Pérez

Universidad Autónoma de San Luis Potosí

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Javier Oliver

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge