Jesús M. Arrieta
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesús M. Arrieta.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Mitchell L. Sogin; Hilary G. Morrison; Julie A. Huber; David B. Mark Welch; Susan M. Huse; Phillip R. Neal; Jesús M. Arrieta; Gerhard J. Herndl
The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This “rare biosphere” is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earths history, may have had a profound impact on shaping planetary processes.
Nature | 2012
Victor Smetacek; Christine Klaas; Volker Strass; Philipp Assmy; Marina Montresor; Boris Cisewski; Nicolas Savoye; Adrian Webb; Francesco d’Ovidio; Jesús M. Arrieta; Ulrich Bathmann; Richard G. J. Bellerby; Gry Mine Berg; Peter Croot; S. Gonzalez; Joachim Henjes; Gerhard J. Herndl; Linn Hoffmann; Harry Leach; Martin Losch; Matthew M. Mills; Craig Neill; Ilka Peeken; Rüdiger Röttgers; Oliver Sachs; Eberhard Sauter; Maike Schmidt; Jill Nicola Schwarz; Anja Terbrüggen; Dieter Wolf-Gladrow
Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Philipp Assmy; Victor Smetacek; Marina Montresor; Christine Klaas; Joachim Henjes; Volker Strass; Jesús M. Arrieta; Ulrich Bathmann; Gry Mine Berg; Eike Breitbarth; Boris Cisewski; Lars Friedrichs; Nike Fuchs; Gerhard J. Herndl; Sandra Jansen; Sören Krägefsky; Mikel Latasa; Ilka Peeken; Rüdiger Röttgers; Renate Scharek; Susanne E. Schüller; Sebastian Steigenberger; Adrian Webb; Dieter Wolf-Gladrow
Significance Silica-shelled diatoms dominate marine phytoplankton blooms and play a key role in ocean ecology and the global carbon cycle. We show how differences in ecological traits of dominant Southern Ocean diatom species, observed during the in situ European Iron Fertilization Experiment (EIFEX), can influence ocean carbon and silicon cycles. We argue that the ecology of thick-shelled diatom species, selected for by heavy copepod grazing, sequesters silicon relative to other nutrients in the deep Southern Ocean and underlying sediments to the detriment of diatom growth elsewhere. This evolutionary arms race provides a framework to link ecology with biogeochemistry of the ocean. Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.
Annual Review of Marine Science | 2013
Carlos M. Duarte; Aurore Regaudie-de-Gioux; Jesús M. Arrieta; Antonio Delgado-Huertas; Susana Agustí
Incubation (in vitro) and incubation-free (in situ) methods, each with their own advantages and limitations, have been used to derive estimates of net community metabolism in the oligotrophic subtropical gyres of the open ocean. The hypothesis that heterotrophic communities are prevalent in most oligotrophic regions is consistent with the available evidence and supported by scaling relationships showing that heterotrophic communities prevail in areas of low gross primary production, low chlorophyll a, and warm water, conditions found in the oligotrophic ocean. Heterotrophic metabolism can prevail where heterotrophic activity is subsidized by organic carbon inputs from the continental shelf or the atmosphere and from nonphotosynthetic autotrophic and mixotrophic metabolic pathways. The growth of the oligotrophic regions is likely to be tilting the metabolic balance of the ocean toward a greater prevalence of heterotrophic communities.
Applied and Environmental Microbiology | 2000
Jesús M. Arrieta; Markus G. Weinbauer; Gerhard J. Herndl
ABSTRACT The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters.
Journal of Microbiological Methods | 2001
Markus M. Moeseneder; Christian Winter; Jesús M. Arrieta; Gerhard J. Herndl
T-RFLP clone characterization (screening) was optimized for a fast and basepair-accurate characterization of clones from marine Archaea collected from the Eastern Mediterranean Sea. Because of the high sensitivity of T-RFLP fingerprinting, a protocol was developed where 10 initial PCR cycles gave detectable terminal fragments from clones. Additionally, forward and reverse primers for PCR were individually labeled and detected simultaneously to assess the suitability of the forward and reverse fragments for T-RFLP screening. Based on independent restriction digests with the tetrameric restriction enzymes HhaI, RsaI and HaeIII to characterize the 49 archaeal clones in our library, the clones were grouped into 13 T-RFLP operational taxonomic units (OTUs). Reverse fragments generally gave less heterogeneous fragments in size. The accuracy of T-RFLP screening was evaluated by sequencing representative clones. Closely related clones ( approximately 97% similarity) could only be resolved with multiple restriction digests where forward and reverse fragments were included in the analysis. All fragments from the clone library were detected in the T-RFLP fingerprint from the complex archaeal community. We found representatives of marine group I, II and III Archaea. Thus, the recently discovered low abundant marine group III Archaea could be clearly differentiated from the other clones in our library and comprised a considerable fraction of the clone library ( approximately 12%). Therefore, our T-RFLP screening approach proved successful in characterizing novel archaeal sequences from the marine environment.
Science | 2015
Jesús M. Arrieta; Eva Mayol; Roberta L. Hansman; Gerhard J. Herndl; Thorsten Dittmar; Carlos M. Duarte
Dilution solves the recalcitrance question The deep ocean is full of dissolved organic carbon, some of which has remained unchanged for thousands of years. What makes these compounds so resistant to microbial degradation? Perhaps their chemical structures make them intrinsically difficult to metabolize? In contrast, Arrieta et al. show that they are simply too dilute to be viable sources of energy for microorganisms (see the Perspective by Middleburg). Further experiments show that if these seemingly recalcitrant organic molecules are concentrated, the ambient microbes can consume them. Science, this issue p. 331; see also p. 290 Dilution is the reason why dissolved organic carbon in the deep ocean is not readily consumed by microbes. [Also see Perspective by Middleburg] Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jesús M. Arrieta; Sophie Arnaud-Haond; Carlos M. Duarte
The marine realm represents 70% of the surface of the biosphere and contains a rich variety of organisms, including more than 34 of the 36 living phyla, some of which are only found in the oceans. The number of marine species used by humans is growing at unprecedented rates, including the rapid domestication of marine species for aquaculture and the discovery of natural products and genes of medical and biotechnological interest in marine biota. The rapid growth in the human appropriation of marine genetic resources (MGRs), with over 18,000 natural products and 4,900 patents associated with genes of marine organisms, with the latter growing at 12% per year, demonstrates that the use of MGRs is no longer a vision but a growing source of biotechnological and business opportunities. The diversification of the use of marine living resources by humans calls for an urgent revision of the goals and policies of marine protected areas, to include the protection of MGRs and address emerging issues like biopiracy or benefit sharing. Specific challenges are the protection of these valuable resources in international waters, where no universally accepted legal framework exists to protect and regulate the exploitation of MGRs, and the unresolved issues on patenting components of marine life. Implementing steps toward the protection of MGRs is essential to ensure their sustainable use and to support the flow of future findings of medical and biotechnological interest.
AMBIO: A Journal of the Human Environment | 2012
Carlos M. Duarte; Susana Agustí; Paul Wassmann; Jesús M. Arrieta; Miquel Alcaraz; Alexandra Coello; Núria Marbà; Iris E. Hendriks; Johnna Holding; Iñigo García-Zarandona; Emma S. Kritzberg; Dolors Vaqué
The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.
Applied and Environmental Microbiology | 2005
Katharina Besemer; Markus M. Moeseneder; Jesús M. Arrieta; Gerhard J. Herndl; Peter Peduzzi
ABSTRACT Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition.