Jesús Martínez-Padilla
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesús Martínez-Padilla.
Biology Letters | 2007
Jesús Martínez-Padilla; François Mougeot; Lorenzo Pérez-Rodríguez; Gary R. Bortolotti
Carotenoids determine the yellow–red colours of many ornaments, which often function as signals of quality. Carotenoid-based signalling may reliably advertise health and should be particularly sensitive to parasite infections. Nematodes are among the commonest parasites of vertebrates, with well-documented negative effects on their hosts. However, to date, little is known about the effects that these parasites may have on carotenoid-based signalling. Tetraonid birds (grouse) exhibit supra-orbital combs, which are bright integumentary ornaments pigmented by carotenoids. We tested the effect of the nematode parasite Trichostrongylus tenuis on signalling in free-living male red grouse Lagopus lagopus scoticus. We show that experimentally reduced nematode infection increases plasma carotenoid concentration and comb redness, demonstrating for the first time that nematodes can influence carotenoid-based signals.
Journal of Evolutionary Biology | 2010
François Mougeot; Jesús Martínez-Padilla; Gary R. Bortolotti; Lucy M. I. Webster; Stuart B. Piertney
Vertebrates commonly use carotenoid‐based traits as social signals. These can reliably advertise current nutritional status and health because carotenoids must be acquired through the diet and their allocation to ornaments is traded‐off against other self‐maintenance needs. We propose that the coloration more generally reveals an individual’s ability to cope with stressful conditions. We tested this idea by manipulating the nematode parasite infection in free‐living red grouse (Lagopus lagopus scoticus) and examining the effects on body mass, carotenoid‐based coloration of a main social signal and the amount of corticosterone deposited in feathers grown during the experiment. We show that parasites increase stress and reduce carotenoid‐based coloration, and that the impact of parasites on coloration was associated with changes in corticosterone, more than changes in body mass. Carotenoid‐based coloration appears linked to physiological stress and could therefore reveal an individual’s ability to cope with stressors.
The Journal of Experimental Biology | 2010
François Mougeot; Jesús Martínez-Padilla; Jonathan D. Blount; Lorenzo Pérez-Rodríguez; Lucy M. I. Webster; Stuart B. Piertney
SUMMARY Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individuals ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.
Journal of Evolutionary Biology | 2010
Jesús Martínez-Padilla; François Mougeot; Lucy M. I. Webster; Lorenzo Pérez-Rodríguez; Stuart B. Piertney
Abstract Testosterone underlies the expression of most secondary sexual traits, playing a key role in sexual selection. However, high levels might be associated with physiological costs, such as immunosuppression. Immunostimulant carotenoids underpin the expression of many red‐yellow ornaments, but are regulated by testosterone and constrained by parasites. We manipulated testosterone and nematode burdens in red grouse (Lagopus lagopus scoticus) in two populations to tease apart their effects on carotenoid levels, ornament size and colouration in three time‐step periods. We found no evidence for interactive effects of testosterone and parasites on ornament size and colouration. We showed that ornament colouration was testosterone‐driven. However, parasites decreased comb size with a time delay and testosterone increased carotenoid levels in one of the populations. This suggests that environmental context plays a key role in determining how individuals resolve the trade‐off between allocating carotenoids for ornamental coloration or for self‐maintenance needs. Our study advocates that adequately testing the mechanisms behind the production or maintenance of secondary sexual characters has to take into account the dynamics of sexual trait expression and their environmental context.
PLOS ONE | 2009
Juan A. Fargallo; Jesús Martínez-Padilla; Javier Viñuela; Guillermo Blanco; Ignacio de la Torre; Pablo M. Vergara; Liesbeth De Neve
Background Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce. Methodology We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species. Principal Findings Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances. Significance Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards in the Mediterranean region.
Parasitology Research | 2005
Luisa Amo; Juan A. Fargallo; Jesús Martínez-Padilla; J. Millán; Pilar López; José Martín
We describe the blood and intestinal parasites in the Ocellated lizard, Lacerta lepida, examining the factors that determine the prevalence and intensity of infection of haemogregarines, and the prevalence of coccidia and nematodes. In relation to haemogregarines, no juveniles were detected as being infected, whereas 71.7 % of adults were infected. The prevalence of infection was positively related to the size of the adults. There were no differences between seasons or sexes in the prevalence or intensity of infection in adults. There were no significant differences in the prevalence of infection by nematodes between ages or sexes, nor in relation to the size of adult lizards, but adult lizards excreting coccidian oocysts tend to be smaller. During the mating period, reproductive activities lead to a decrease in the body condition. However, neither the intensity of haemogregarine’s infection nor the prevalence of intestinal parasites was related to the lizards’ body condition.
Journal of Animal Ecology | 2014
Jesús Martínez-Padilla; Steve Redpath; Mohammed Zeineddine; François Mougeot
Long-term studies have been the backbone of population ecology. The red grouse Lagopus lagopus scoticus is one species that has contributed widely to this field since the 1950s. This paper reviews the trajectory and profound impact that these studies have had. Red grouse research has combined long-term studies of marked individuals with demographic studies over wide geographical areas and replicated individual- and population-level manipulations. A main focus has been on understanding the causes of population cycles in red grouse, and in particular the relative importance of intrinsic (behaviour) and extrinsic (climate, food limitation and parasite) mechanisms. Separate studies conducted in different regions initially proposed either the nematode parasite Trichostrongylus tenuis or changes in male aggressiveness in autumn as drivers of population cycles. More recent experiments suggest that parasites are not a necessary cause for cycles and have highlighted that behavioural and parasite-mediated mechanisms are interrelated. Long-term experiments show that parasites and aggressiveness interact. Two outstanding questions remain to be tested experimentally. First, what intrinsic mechanism causes temporal variation in patterns of male aggressiveness? The current favoured mechanism is related to patterns of kin structuring although there are alternative hypotheses. Second, how do the dual, interacting mechanisms, affect population dynamics? Red grouse studies have had an important impact on the field of population ecology, in particular through highlighting: (1) the impact of parasites on populations; (2) the role of intrinsic mechanisms in cyclic dynamics and (3) the need to consider multiple, interacting mechanisms.
Heredity | 2013
Sin-Yeon Kim; Juan A. Fargallo; Pablo Vergara; Jesús Martínez-Padilla
The genetic covariation among different traits may cause the appearance of correlated response to selection on multivariate phenotypes. Genes responsible for the expression of melanin-based color traits are also involved in other important physiological functions such as immunity and metabolism by pleiotropy, suggesting the possibility of multivariate evolution. However, little is known about the relationship between melanin coloration and these functions at the additive genetic level in wild vertebrates. From a multivariate perspective, we simultaneously explored inheritance and selection of melanin coloration, body mass and phytohemagglutinin (PHA)-mediated immune response by using long-term data over an 18-year period collected in a wild population of the common kestrel Falco tinnunculus. Pedigree-based quantitative genetic analyses showed negative genetic covariance between melanin-based coloration and body mass in male adults and positive genetic covariance between body mass and PHA-mediated immune response in fledglings as predicted by pleiotropic effects of melanocortin receptor activity. Multiple selection analyses showed an increased fitness in male adults with intermediate phenotypic values for melanin color and body mass. In male fledglings, there was evidence for a disruptive selection on rump gray color, but a stabilizing selection on PHA-mediated immune response. Our results provide an insight into the evolution of multivariate traits genetically related with melanin-based coloration. The differences in multivariate inheritance and selection between male and female kestrels might have resulted in sexual dimorphism in size and color. When pleiotropic effects are present, coloration can evolve through a complex pathway involving correlated response to selection on multivariate traits.
Journal of Evolutionary Biology | 2012
Pablo Vergara; Jesús Martínez-Padilla; François Mougeot; Fiona Leckie; Steve Redpath
Numerous studies have shown positive associations between ornaments and condition, as predicted by indicator models of sexual selection. However, this idea is continuously challenged by opposite results, which reveal our lack of full understanding of how sexual selection works. Environmental heterogeneity may explain such inconsistencies, but valid field tests of this idea are currently lacking. We first analysed the relationship between condition and ornament expression from nine populations over 7 years in a wild bird, the red grouse Lagopus lagopus scoticus. We then manipulated male aggressiveness at the population level by means of testosterone implants in a replicated field experiment. We found that the relationship between condition and ornamentation varied greatly between environments and became stronger when environmental conditions (ECs) were worse or when aggressiveness in the population was experimentally increased. Some ornaments may therefore reliably advertise a better condition only in adverse ECs. Considering environmental heterogeneity can help reconcile conflicting findings regarding the reliability of ornaments as indicators of condition and will help our understanding of sexual selection processes.
Hormones and Behavior | 2014
Jesús Martínez-Padilla; Lorenzo Pérez-Rodríguez; François Mougeot; Sonja C. Ludwig; Steve Redpath
In a reliable signalling system, individual quality is expected to mediate the costs associated with ornamental displays, with relatively lower costs being paid by individuals of higher quality. These relative costs should depend not only on individual quality, but also on levels of intra-sexual competition. We explored the current and delayed effects that testosterone implants have on bird ornamentation in populations with contrasted population densities, as a proxy for intra-sexual competition. In a replicated experiment, we manipulated testosterone in 196 yearling male red grouse Lagopus lagopus scoticus in autumn in populations of high and low levels of intra-sexual competition. Males were assigned to one of three exogenous testosterone (T) treatments: empty implants (T0), small T implants (T1) or larger T implants (T2). We monitored subsequent changes in testosterone levels, ornament size and carotenoid-based colouration, carotenoid levels and body condition from autumn to spring. Testosterone implants increased testosterone levels, comb redness and comb size, and decreased body condition but these effects depended on levels of intra-sexual competition. Specifically, T2-implanted birds increased testosterone levels and comb size more, and reduced body condition more, in populations where intra-sexual competition was low. In the following spring, testosterone levels of T2-treated birds kept increasing in populations where intra-sexual competition was high but not in populations where intra-sexual competition was low. Our results highlight that levels of intra-sexual competition alter the relationship between testosterone levels and ornament expression, influencing their condition-dependence; they also indicate that the outcome of standard hormone manipulation conducted in free-living animals vary depending on the population context.