Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Pla is active.

Publication


Featured researches published by Jesús Pla.


Eukaryotic Cell | 2003

The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans

Rebeca Alonso-Monge; Federico Navarro-García; Elvira Román; Ana Isabel Negredo; Blanca Eisman; César Nombela; Jesús Pla

ABSTRACT Candida albicans mutants with mutations in mitogen-activated protein (MAP) kinase HOG1 displayed an increased sensitivity to agents producing reactive oxygen species, such as oxidants (menadione, hydrogen peroxide, or potassium superoxide), and UV light. Consistent with this finding, C. albicans Hog1 was activated not only in response to an increase in external osmolarity, as happens with its Saccharomycescerevisiae homologue, but also in response to hydrogen peroxide. The Hog1-mediated response to oxidative stress was different from that of transcription factor Cap1, the homologue of S. cerevisiae Yap1, as shown by the different sensitivities to oxidants and the kinetics of cell death of cap1Δ, hog1, and hog1cap1Δ mutants. Deletion of CAP1 did not influence the level of Hog1 phosphorylation, and deletion of HOG1 did not affect Cap1 nuclear localization. Moreover, we show that the HOG1 gene plays a role in chlamydospore formation, another oxygen-related morphogenetic event, as demonstrated by the fact that hog1 cells were unable to generate these thick-walled structures in several media through a mechanism different from that of the EFG1 regulator. This is the first demonstration of the role of the Hog1-mediated MAP kinase pathway in resistance to oxidative stress in pathogenic fungi, and it allows us to propose a molecular model for the oxidative stress response in C. albicans.


Molecular and Cellular Biology | 1995

Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity.

Federico Navarro-García; Miguel Sánchez; Jesús Pla; César Nombela

Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi.


Molecular and Cellular Biology | 2005

The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans

Elvira Román; César Nombela; Jesús Pla

ABSTRACT The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen.


Eukaryotic Cell | 2003

Candida albicans Response Regulator Gene SSK1 Regulates a Subset of Genes Whose Functions Are Associated with Cell Wall Biosynthesis and Adaptation to Oxidative Stress

Neeraj Chauhan; Diane O. Inglis; Elvira Román; Jesús Pla; Dongmei Li; José Antonio Calera; Richard Calderone

ABSTRACT Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30°C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or oxidative stress. We observed that Hog1p was phosphorylated in the ssk1 mutant of C. albicans when grown in a hyperosmotic medium but was not phosphorylated in the ssk1 mutant when the latter was grown in the presence of hydrogen peroxide. These data indicate that C. albicans utilizes the Ssk1p response regulator protein to adapt cells to oxidative stress, while its role in the adaptation to osmotic stress is less certain. Further, SSK1 appears to have a regulatory function in some aspects of cell wall biosynthesis. Thus, the functions of C. albicans SSK1 differ from those of S. cerevisiae SSK1.


Microbiology | 1997

Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans

Ana Isabel Negredo; Lucía Monteoliva; C. Gil; Jesús Pla; César Nombela

The ARG5,6 gene from the dimorphic fungus Candida albicans was cloned by functional complementation of the arginine auxotrophy present in strain EL2 (Arg-) using a gene library constructed in the double autonomously replicating sequence vector pRM1. Sequence analysis revealed a putative 857 amino acid polypeptide (95 kDa) which showed high homology (63% protein identity) to the Saccharomyces cerevisiae ARG5,6 gene. Similarly to the S. cerevisiae gene, the C. albicans ARG5,6 gene is responsible for both the acetylglutamate kinase and acetylglutamyl-phosphate reductase activities, the second and third steps of arginine biosynthesis at the mitochondria. The C. albicans ARG5,6 gene complemented the arg6 mutation present in S. cerevisiae (strain D160-4D) on a yeast episomal plasmid using its own regulatory signals. A set of non-integrative high-efficiency plasmid vectors based on this gene marker was constructed and a null C. albicans arg5,6 delta strain was obtained using the common URA3-blaster strategy. In addition, we generated an arg5,6 delta null mutant in a single transformation event, thus improving the basic strategy for generating gene deletions in C. albicans.


Microbiology | 1998

A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans.

Federico Navarro-García; Rebeca Alonso-Monge; Hortensia Rico; Jesús Pla; Rafael Sentandreu; César Nombela

The Candida albicans MKC1 gene encodes a mitogen-activated protein (MAP) kinase, which has been cloned by complementation of the lytic phenotype associated with Saccharomyces cerevisiae slt2 (mpk1) mutants. In this work, the physiological role of this MAP kinase in the pathogenic fungus C. albicans was characterized and a role for MKC1 in the biogenesis of the cell wall suggested based on the following criteria. First, C. albicans mkc1 delta/mkc1 delta strains displayed alterations in their cell surfaces under specific conditions as evidenced by scanning electron microscopy. Second, an increase in specific cell wall epitopes (O-glycosylated mannoprotein) was shown by confocal microscopy in mkc1 delta/mkc1 delta mutants. Third, the sensitivity to antifungals which inhibit (1,3)-beta-glucan and chitin synthesis was increased in these mutants. In addition, evidence for a role for the MKC1 gene in morphological transitions in C. albicans is presented based on the impairment of pseudohyphal formation of mkc1 delta/mkc1 delta strains on Spider medium and on the effect of its overexpression on Sacch. cerevisiae colony morphology on SLADH medium. Using the two-hybrid system, it was also demonstrated that MKC1 is able to interact specifically with Sacch. cerevisiae Mkk1p and Mkk2p, the MAP-kinase kinases of the PKC1-mediated route of Sacch. cerevisiae, and to activate transcription in Sacch. cerevisiae when bound to a DNA-binding element. These results suggest a role for this MAP kinase in the construction of the cell wall of C. albicans and indicate its potential relevance for the development of novel antifungals.


Eukaryotic Cell | 2006

The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans.

Blanca Eisman; Rebeca Alonso-Monge; Elvira Román; D. Arana; César Nombela; Jesús Pla

ABSTRACT The Hog1 mitogen-activated protein (MAP) kinase mediates an adaptive response to both osmotic and oxidative stress in the fungal pathogen Candida albicans. This protein also participates in two distinct morphogenetic processes, namely the yeast-to-hypha transition (as a repressor) and chlamydospore formation (as an inducer). We show here that repression of filamentous growth occurs both under serum limitation and under other partially inducing conditions, such as low temperature, low pH, or nitrogen starvation. To understand the relationship of the HOG pathway to other MAP kinase cascades that also play a role in morphological transitions, we have constructed and characterized a set of double mutants in which we deleted both the HOG1 gene and other signaling elements (the CST20, CLA4, and HST7 kinases, the CPH1 and EFG1 transcription factors, and the CPP1 protein phosphatase). We also show that Hog1 prevents the yeast-to-hypha switch independent of all the elements analyzed and that the inability of the hog1 mutants to form chlamydospores is suppressed when additional elements of the CEK1 pathway (CST20 or HST7) are altered. Finally, we report that Hog1 represses the activation of the Cek1 MAP kinase under basal conditions and that Cek1 activation correlates with resistance to certain cell wall inhibitors (such as Congo red), demonstrating a role for this pathway in cell wall biogenesis.


Yeast | 1999

Two-Dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall

Mercedes Pardo; Lucía Monteoliva; Jesús Pla; Miguel Sánchez; Concha Gil; César Nombela

Protoplasts of Saccharomyces cerevisiae incubated in regenerating conditions secrete cell wall components in order to allow the biosynthesis of this structure. During the first hours of incubation, many of these are not retained in the forming cell wall but remain in the medium. We have developed a method for collecting the secreted proteins and have analysed these by two‐dimensional electrophoresis to obtain a reference map of putative cell wall proteins. Several proteins were identified by microsequencing or immunoblotting; namely, cell wall hydrolytic enzymes, heat shock proteins, glycolytic enzymes and others. Some β‐1,3‐ and β‐1,6‐glucosylation was detected in the proteins secreted by regenerating protoplasts. Copyright


Cellular Microbiology | 2007

Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans.

David M. Arana; Rebeca Alonso-Monge; Chen Du; Richard Calderone; Jesús Pla

The role of four mitogen‐activated protein (MAP) kinase pathways in the survival of Candida albicans following infection of human phagocytes has been addressed through the analysis of mutants defective in their respective MAP kinase. While the contribution of the cell integrity (Mkc1‐mediated) or mating (Cek2‐mediated) pathways is relatively minor to survival, clear and opposite effects were observed for cek1 and hog1 mutants, despite the fact that these two MAP kinases are important virulence determinants in the mouse model of experimental infection. The Cek1‐mediated pathway is involved in sensitivity to phagocyte‐mediated killing, while the HOG pathway contributes to the survival of the fungal cells in this interaction. Furthermore, reporter genes have been developed to quantify oxidative and nitrosative stress. hog1 mutants show an oxidative and nitrosative stress response augmented – albeit non‐protective – when challenged with oxidants and NO donors in vitro or phagocytic cells (macrophages, neutrophils and the myelomonocytic cell line HL‐60), suggesting this as the cause of their reduced virulence in the murine model of infection. These data have important consequences for the development of novel antifungal therapies to combat against fungal infection.


Eukaryotic Cell | 2009

Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans.

Elvira Román; Fabien Cottier; Joachim F. Ernst; Jesús Pla

ABSTRACT We have characterized the role that the Msb2 protein plays in the fungal pathogen Candida albicans by the use of mutants defective in the putative upstream components of the HOG pathway. Msb2, in cooperation with Sho1, controls the activation of the Cek1 mitogen-activated protein kinase under conditions that damage the cell wall, thus defining Msb2 as a signaling element of this pathway in the fungus. msb2 mutants display altered sensitivity to Congo red, caspofungin, zymolyase, or tunicamycin, indicating that this protein is involved in cell wall biogenesis. Msb2 (as well as Sho1 and Hst7) is involved in the transmission of the signal toward Cek1 mediated by the Cdc42 GTPase, as revealed by the use of activated alleles (Cdc42G12V) of this protein. msb2 mutants have a stronger defective invasion phenotype than sho1 mutants when tested on certain solid media that use mannitol or sucrose as a carbon source or under hypoxia. Interestingly, Msb2 contributes to growth under conditions of high osmolarity when both branches of the HOG pathway are altered, as triple ssk1 msb2 sho1 mutants (but not any single or double mutant) are osmosensitive. However, this phenomenon is independent of the presence of Hog1, as Hog1 phosphorylation, Hog1 translocation to the nucleus, and glycerol accumulation are not affected in this mutant following an osmotic shock. These results reveal essential functions in morphogenesis, invasion, cell wall biogenesis, and growth under conditions of high osmolarity for Msb2 in C. albicans and suggest the divergence and specialization of this signaling pathway in filamentous fungi.

Collaboration


Dive into the Jesús Pla's collaboration.

Top Co-Authors

Avatar

Elvira Román

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

César Nombela

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Prieto

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Federico Navarro-García

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

David M. Arana

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Concha Gil

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Lucía Monteoliva

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rosalía Diez-Orejas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Blanca Eisman

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge