Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Rodríguez-Calcerrada is active.

Publication


Featured researches published by Jesús Rodríguez-Calcerrada.


Tree Physiology | 2010

Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments

Jesús Rodríguez-Calcerrada; Owen K. Atkin; T. Matthew Robson; Joana Zaragoza-Castells; Luis Gil; Ismael Aranda

Little is known about how environmental factors shape the short- and long-term responses of leaf respiration to temperature under field conditions despite the importance of respiration for plant and stand carbon balances. Impacts of water availability and canopy cover on leaf dark respiration (R) and temperature sensitivity were assessed in beech (Fagus sylvatica L.) seedlings in a sub-Mediterranean population. We studied seedlings established within canopy gaps (39% global site factor; GSF) that were subject to either no watering (unwatered plants; UW) or regular watering (2-10% higher volumetric topsoil water content as summer progressed; W plants) and seedlings established beneath the adjacent understorey (12% GSF). Leaf R rose exponentially with diurnal increases in temperature; the same temperature sensitivity (Q(10): 2.2) was found for understorey and gap plants, irrespective of watering treatment. Respiration estimated at 25 degrees C (R(25)) was lower in the understorey than the gaps and was significantly lower in the unwatered than in the watered gap plants by the end of summer (0.65 versus 0.80 micromol m(-2) s(-1)). R(25) declined with increasing summer temperature in all plants; however, respiration estimated at the prevailing ambient temperature did not change through the summer. There were parallel declines in R(25) and concentrations of starch and soluble sugars with increasing summer temperature for gap plants. We conclude that seasonal shifts in temperature-response curves of beech leaf R occur in both low- and high-light environments; since leaf R decreased with increasing plant water deficit, such shifts are likely to be greater whenever plants experience summer drought compared to scenarios where plants experience high rainfall in summer.


Functional Plant Biology | 2013

Photosynthetic sensitivity to drought varies among populations of Quercus ilex along a rainfall gradient

Nicolas K. Martin-StPaul; Jean-Marc Limousin; Jesús Rodríguez-Calcerrada; Julien Ruffault; Serge Rambal; Matthew G. Letts; Laurent Misson

Drought frequency and intensity are expected to increase in the Mediterranean as a consequence of global climate change. To understand how photosynthetic capacity responds to long-term water stress, we measured seasonal patterns of stomatal (SL), mesophyll (MCL) and biochemical limitations (BL) to net photosynthesis (Amax) in three Quercus ilex (L.) populations from sites differing in annual rainfall. In the absence of water stress, stomatal conductance (gs), maximum carboxylation capacity (Vcmax), photosynthetic electron transport rate (Jmax) and Amax were similar among populations. However, as leaf predawn water potential (Ψl,pd) declined, the population from the wettest site showed steeper declines in gs, Vcmax, Jmax and Amax than those from the drier sites. Consequently, SL, MCL and BL increased most steeply in response to decreasing Ψl,pd in the population from the wettest site. The higher sensitivity of Amax to drought was primarily the result of stronger stomatal regulation of water loss. Among-population differences were not observed when gs was used instead of Ψl,pd as a drought stress indicator. Given that higher growth rates, stature and leaf area index were observed at the wettest site, we speculate that hydraulic architecture may explain the greater drought sensitivity of this population. Collectively, these results highlight the importance of considering among-population differences in photosynthetic responses to seasonal drought in large scale process-based models of forest ecosystem function.


Plant Cell and Environment | 2013

Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers

F. Javier Cano; David Sánchez-Gómez; Jesús Rodríguez-Calcerrada; Charles R. Warren; Luis Gil; Ismael Aranda

In recent years, many studies have focused on the limiting role of mesophyll conductance (gm ) to photosynthesis (An ) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf-level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought-induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought-induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.


New Forests | 2010

Functional performance of oak seedlings naturally regenerated across microhabitats of distinct overstorey canopy closure

Jesús Rodríguez-Calcerrada; Francisco Javier Cano; María Valbuena-Carabaña; Luis Gil; Ismael Aranda

The extent to which seedling recruitment is limited by summer drought in Mediterranean-type ecosystems depends on the light microsite, yet the relationship between light availability and water status, functional performance, and survival of seedlings in these systems is still unclear. Over a 3-year period, we studied the pattern of survival and functional performance of seedlings of Quercus petraea (Matt.) Liebl. and Quercus pyrenaica Willd. in a montane forest in central Spain, which is the southern edge of the natural range of Q. petraea. After a mast year of the two species, 72 plots were established in six microhabitats spanning a range of overstorey canopy closure: closed, partial and open canopies dominated by either Q. petraea or Q. pyrenaica adult trees. Seedlings of each species naturally emerged beneath the conspecific-dominated canopies. The second and third years of study were extremely dry. Three years after emergence, the greatest seedling survival occurred beneath the partial canopy of Q. pyrenaica trees (8%) and the lowest (0%) beneath the closed canopies of Q. pyrenaica and Q. petraea. Survival for Q. pyrenaica increased linearly with understorey light across the range of 10–35% Global Site Factor. Plant water deficit (estimated by leaf water potential) was high across microhabitats, and increased with light availability for Q. pyrenaica. Potential for photosynthesis (estimated by the electron transport rate of photosystem II) decreased with canopy closure; and potential for light harvesting (e.g. specific leaf area (SLA) and chlorophyll concentration) increased with closure. Extreme water deficit could be the main contributor to seedling death in the more open microhabitats, whereas light level was insufficient to maintain carbon balance under the water-stressful conditions existing beneath the closed tree canopies. Seedling establishment appears to be a limiting factor for the recruitment of both oaks within this forest in a wide range of microhabitats, especially for the more drought-sensitive Q. petraea. Moderate reductions of tree canopy cover can improve seedling establishment, but extreme summer droughts can prevent the success of any silvicultural practice made.


Tree Physiology | 2008

Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps.

T. Matthew Robson; Jesús Rodríguez-Calcerrada; David Sánchez-Gómez; Ismael Aranda

Refugia of mixed beech forest persist in the central mountains of the Iberian Peninsula at the south-western limit of European beech (Fagus sylvatica L.) distribution. The lack of beech regeneration is a concern in this region that has experienced reduced rainfall and higher temperatures over the past 30 years. Beech is considered especially susceptible to climate change because of its conservative shade-tolerant growth strategy; hence seedling responses to drought stress in gaps and in the understory are of particular interest. During the summer of 2007, a watering treatment raised the soil water content by up to 5% in gap and understory plots of beech seedlings in a mixed beech forest. Root-collar diameter was increased by our watering treatment in understory seedlings. Neither drought-avoidance through stomatal closure nor physiological drought-tolerance mechanisms were able to mitigate the effects of water stress in the understory seedlings, whereas osmotic adjustment enhanced the ability of the gap seedlings to tolerate water stress. Overall, high photosynthetic rates in the gaps, despite the photoinhibitory effects of high radiation, allowed gap seedlings to survive and grow better than the understory seedlings irrespective of water availability. Our results indicate that further intensification of summer drought, predicted for the Iberian Peninsula, will hinder the establishment of a beech seedling bank in the understory because of the conflicting seedling trait responses to simultaneously withstand water stress and to tolerate shade.


Functional Plant Biology | 2011

Opposite changes in leaf dark respiration and soluble sugars with drought in two Mediterranean oaks

Jesús Rodríguez-Calcerrada; Oula Shahin; María del Carmen del Rey; Serge Rambal

The decline in net photosynthetic CO2 uptake (An) caused by drought could reduce the availability of soluble sugars and thus limit leaf dark respiration (Rd). We investigated the response of leaf gas exchange and nonstructural carbohydrates to drought by stopping watering to 2-year-old plants of Quercus ilex L. and Quercus pubescens Willd. grown in large pots. An declined with increasing water deficit more rapidly than Rd, and Rd declined slightly more steeply in Q. ilex than in Q. pubescens. Soluble sugars increased in drought-treated plants relative to control well watered plants, and the opposite pattern was found for starch. After rewatering, Rd returned to pre-drought rates within 2 days and An within 1 week. Soluble sugars tended to recover pre-drought values after rewatering but continued to be significantly higher in drought-treated than control plants of Q. pubescens, for which the increase in the concentration of soluble sugars had been higher. These results suggest that the relative production of soluble sugars is upregulated when An is limited, and that soluble sugars do not control respiratory rates in response to and recovery from water deficit. Rather, we suggest that the decline in Rd contributes to drought tolerance by reducing the consumption of soluble sugars, which play an important role as osmoprotectants during water deficit stress.


Trees-structure and Function | 2012

Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities

Matthew G. Letts; Jesús Rodríguez-Calcerrada; Víctor Rolo; Serge Rambal

Physiological and morphological plasticity are essential for growth and reproduction in contrasting light environments. In dry forest ecosystems, light generalists must also cope with the trade-offs involved in synchronous acclimation to light availability and drought. To understand how the broadleaf evergreen tree-shrub Buxus sempervirens L. (common box) inhabits both understory and successional terrain of Mediterranean forest, we measured photosynthesis–fluorescence light response, morphological traits and architectural characteristics across a light gradient. Our results show that B. sempervirens exhibits stress resistance syndrome, with little change in net photosynthesis rate across a light availability gradient, due to compensatory physiological and morphological acclimation. Light energy processing and dissipation potential were highest in leaves of well-illuminated plants, with higher electron transport rate, fraction of open photosystem II reaction centres, non-photochemical quenching, photorespiration and dark respiration. In contrast, traits reducing light capture efficiency were observed in high light shrubs, including higher leaf mass per unit area, leaf clumping, leaf inclination and branch inclination. We suggest that both physiological and morphological plasticity are required for B. sempervirens to survive across a light gradient in a dry forest ecosystem, while exhibiting homoeostasis in photosynthetic gas exchange. We further speculate that the low growth rate of B. sempervirens is effective in full sun only due to a lack of competition in low resource microsites.


Trees-structure and Function | 2006

Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient

Jesús Rodríguez-Calcerrada; J. A. Pardos; Luis Gil; Ismael Aranda

Photosynthetic acclimation of two co-occurring deciduous oaks (Quercus petraea and Quercus pyrenaica) to a natural light gradient was studied during one growing season. In the spring of 2003, 90 seedlings per species were planted along a transect resulting from a dense Pinus sylvestris stand, an adjacent thinned area and a 10-m-wide firebreak (16.5–60.9% Global Site Factor (GSF)). In two dates of the following summer, we measured leaf gas exchange, carboxylation efficiency (CE), chlorophyll and nitrogen content, light–response curves of chlorophyll a fluorescence parameters, and leaf mass per area (LMA). Summer was mild, as evidenced by leaf predawn water potential (Ψpd), which reduced the interactive effect of water stress on the response of seedlings to light. Q. pyrenaica had higher LMA, CE, stomatal conductance (gs max) and photosynthesis per unit area


Plant Cell and Environment | 2015

Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications

Jesús Rodríguez-Calcerrada; Rosana López; Roberto Salomón; Guillermo G. Gordaliza; María Valbuena-Carabaña; Jacek Oleksyn; Luis Gil


Tree Physiology | 2012

Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration

Jesús Rodríguez-Calcerrada; Jean-Marc Limousin; Nicolas K. Martin-StPaul; Carsten Jaeger; Serge Rambal

(A_{\max }^a )

Collaboration


Dive into the Jesús Rodríguez-Calcerrada's collaboration.

Top Co-Authors

Avatar

Luis Gil

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ismael Aranda

Center for International Forestry Research

View shared research outputs
Top Co-Authors

Avatar

Serge Rambal

Universidade Federal de Lavras

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Pardos

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Salomón

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Ourcival

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Francisco Javier Cano

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Inés González-Doncel

Technical University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge