Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Ruiz-Cabello is active.

Publication


Featured researches published by Jesús Ruiz-Cabello.


Stroke | 2008

Dual-Modality Monitoring of Targeted Intraarterial Delivery of Mesenchymal Stem Cells After Transient Ischemia

Piotr Walczak; Jian Zhang; Assaf A. Gilad; Dorota Kedziorek; Jesús Ruiz-Cabello; Randell G. Young; Mark F. Pittenger; Peter C.M. van Zijl; Judy Huang; Jeff W. M. Bulte

Background and Purpose— In animal models of stroke, functional improvement has been obtained after stem cell transplantation. Successful therapy depends largely on achieving a robust and targeted cell engraftment, with intraarterial (IA) injection being a potentially attractive route of administration. We assessed the suitability of laser Doppler flow (LDF) signal measurements and magnetic resonance (MR) imaging for noninvasive dual monitoring of targeted IA cell delivery. Methods— Transient cerebral ischemia was induced in adult Wistar rats (n=25) followed by IA or intravenous (IV) injection of mesenchymal stem cells (MSCs) labeled with superparamagnetic iron oxide. Cell infusion was monitored in real time with transcranial laser Doppler flowmetry while cellular delivery was assessed with MRI in vivo (4.7T) and ex vivo (9.4T). Results— Successful delivery of magnetically labeled MSCs could be readily visualized with MRI after IA but not IV injection. IA stem cell injection during acute stroke resulted in a high variability of cerebral engraftment. The amount of LDF reduction during cell infusion (up to 80%) was found to correlate well with the degree of intracerebral engraftment, with low LDF values being associated with significant morbidity. Conclusions— High cerebral engraftment rates are associated with impeded cerebral blood flow. Noninvasive dual-modality imaging enables monitoring of targeted cell delivery, and through interactive adjustment may improve the safety and efficacy of stem cell therapy.


NMR in Biomedicine | 2011

Fluorine (19F) MRS and MRI in biomedicine

Jesús Ruiz-Cabello; Brad P. Barnett; Paul A. Bottomley; Jeff W. M. Bulte

Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR‐detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. Copyright


Science | 2014

Neutrophils scan for activated platelets to initiate inflammation

Vinatha Sreeramkumar; José M. Adrover; Iván Ballesteros; María I. Cuartero; Jan Rossaint; Izaskun Bilbao; Maria Nácher; Christophe Pitaval; Irena Radovanovic; Yoshinori Fukui; Rodger P. McEver; Marie Dominique Filippi; Ignacio Lizasoain; Jesús Ruiz-Cabello; Alexander Zarbock; María A. Moro; Andrés Hidalgo

Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils’ bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds. Blood neutrophil cells sample platelets in the bloodstream before infiltrating surrounding tissue. A two-cell collaboration for inflammation Immune cells called neutrophils are first responders to infection. Neutrophils move within and through blood vessels to get to sites of infection quickly. Sreeramkumar et al. found that mouse neutrophils rely on platelets to help find such sites. Neutrophils extended protrusions into blood vessels. When these protrusions came into contact with platelets, the neutrophils migrated into the surrounding tissue to carry out their inflammatory functions. Preventing these neutrophilplatelet interactions alleviated collateral inflammatory damage to tissues in several injury models in mice. Science, this issue p. 1234


Journal of Magnetic Resonance | 1992

Gradient-enhanced heteronuclear correlation spectroscopy : theory and experimental aspects

Jesús Ruiz-Cabello; Geerten W. Vuister; Chrit T. W. Moonen; Peter van Gelderen; Jack S. Cohen; Peter C. M. van Zijl

Abstract A detailed theoretical and experimental treatment is given for gradient-enhanced heteronuclear correlation spectroscopy. Both multiple-quantum and single-quantum sequences are described. In addition to a comparison with conventional experiments using phase cycling, the effects of different gradient combinations are examined with respect to artifacts occurring in the heteronuclear dimension. The influence of gradient performance and diffusion on sensitivity is discussed. Approaches to attain phase-sensitive spectra are also analyzed.


European Respiratory Journal | 2003

Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema

Germán Peces-Barba; Jesús Ruiz-Cabello; Yannick Crémillieux; Ignacio R. Rodriguez; D. Dupuich; Virginie Callot; M. Ortega; M.L. Rubio Arbo; Manuel Cortijo; Nicolás González-Mangado

Hyperpolarised gases have been most recently used in magnetic resonance imaging to demonstrate new image-derived pulmonary function parameters. One of these parameters is the apparent diffusion coefficient, which reflects the sizes of the structures that compartmentalise gas within the lung (i.e. alveolar space). In the present study, noninvasive parameters were compared to microscopic measurements (mean linear intercept and mean alveolar internal area). Nonselective helium‐3 gas density coronal ex vivo images and apparent diffusion maps were acquired in control and elastase-induced panacinar emphysema rats. Total lung capacity was considered the reference for both imaging experiments and lung fixation. A mild degree of emphysema was found based on mean linear intercept (134±25 µm) versus control (85±14 µm). The apparent diffusion coefficients were significantly different between the two groups (0.18±0.02 and 0.15±0.01 cm2·s−1 for elastase and control, respectively). A significant correlation between the apparent diffusion coefficient and corresponding morphometric parameters in mild emphysema was demonstrated for the first time. This study opens the possibility of estimating absolute airspace size using noninvasive techniques.


Magnetic Resonance in Medicine | 2008

In vivo "hot spot" MR imaging of neural stem cells using fluorinated nanoparticles

Jesús Ruiz-Cabello; Piotr Walczak; Dorota Kedziorek; V. P. Chacko; Anna H. Schmieder; Samuel A. Wickline; Gregory M. Lanza; Jeff W. M. Bulte

To optimize 19F MR tracking of stem cells, we compared cellular internalization of cationic and anionic perfluoro‐15‐crown‐5‐ether (PFCE) nanoparticles using cell culture plates with different surface coatings. The viability and proliferation of anionic and cationic PFCE‐labeled neural stem cells (NSCs) did not differ from unlabeled cells. Cationic PFCE nanoparticles (19F T1/T2 = 580/536 ms at 9.4 Tesla) were superior to anionic particles for intracellular fluorination. Best results were obtained with modified polystyrene culture dishes coated with both carboxylic and amino groups rather than conventional carboxyl‐coated dishes. After injecting PFCE‐labeled NSCs into the striatum of mouse brain, cells were readily identified in vivo by 19F MRI without changes in signal or viability over a 2‐week period after grafting. These results demonstrate that neural stem cells can be efficiently fluorinated with cationic PFCE nanoparticles without using transfection agents and visualized in vivo over prolonged periods with an MR sensitivity of approximately 140 pmol of PFCE/cell. Magn Reson Med 60:1506–1511, 2008.


Nature | 2016

Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing

Ana Latorre-Pellicer; Raquel Moreno-Loshuertos; Ana Victoria Lechuga-Vieco; Fátima Sánchez-Cabo; Carlos Torroja; Rebeca Acín-Pérez; Enrique Calvo; Esther Aix; Andrés González-Guerra; Angela Logan; María Luisa Bernad-Miana; Eduardo Romanos; Raquel Cruz; Sara Cogliati; Beatriz Sobrino; Angel Carracedo; Acisclo Pérez-Martos; Patricio Fernández-Silva; Jesús Ruiz-Cabello; Michael P. Murphy; Ignacio Flores; Jesús Vázquez; José Antonio Enríquez

Human mitochondrial DNA (mtDNA) shows extensive within-population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic, metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation, insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Magnetic Resonance in Medicine | 2010

Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles

Dorota Kedziorek; Naser Muja; Piotr Walczak; Jesús Ruiz-Cabello; Assaf A. Gilad; Chunfa C. Jie; Jeff W. M. Bulte

With MRI (stem) cell tracking having entered the clinic, studies on the cellular genomic response toward labeling are warranted. Gene expression profiling was applied to C17.2 neural stem cells following superparamagnetic iron oxide/PLL (poly‐L‐lysine) labeling over the course of 1 week. Relative to unlabeled cells, less than 1% of genes (49 total) exhibited greater than 2‐fold difference in expression in response to superparamagnetic iron oxide/PLL labeling. In particular, transferrin receptor 1 (Tfrc) and heme oxygenase 1 (Hmox1) expression was downregulated early, whereas genes involved in lysosomal function (Sulf1) and detoxification (Clu, Cp, Gstm2, Mgst1) were upregulated at later time points. Relative to cells treated with PLL only, cells labeled with superparamagnetic iron oxide/PLL complexes exhibited differential expression of 1399 genes. Though these differentially expressed genes exhibited altered expression over time, the overall extent was limited. Gene ontology analysis of differentially expressed genes showed that genes encoding zinc‐binding proteins are enriched after superparamagnetic iron oxide/PLL labeling relative to PLL only treatment, whereas members of the apoptosis/programmed cell death pathway did not display increased expression. Overexpression of the differentially expressed genes Rnf138 and Abcc4 were confirmed by quantitative real‐time polymerase chain reaction. These results demonstrate that, although early reactions responsible for iron homeostasis are induced, overall neural stem cell gene expression remains largely unaltered following superparamagnetic iron oxide/PLL labeling. Magn Reson Med 63:1031–1043, 2010.


Radiology | 2011

Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging

Brad P. Barnett; Jesús Ruiz-Cabello; Partha Hota; Robert P. Liddell; Piotr Walczak; Valerie Howland; V. P. Chacko; Dara L. Kraitchman; Aravind Arepally; Jeff W. M. Bulte

PURPOSE To develop novel immunoprotective alginate microcapsule formulations containing perfluorocarbons (PFCs) that may increase cell function, provide immunoprotection for xenografted cells, and simultaneously enable multimodality imaging. MATERIALS AND METHODS All animal experiments were approved by an Institutional Animal Care and Use Committee. Cadaveric human islet cells were encapsulated with alginate, poly-l-lysine, and perfluorooctyl bromide (PFOB) or perfluoropolyether (PFPE). In vitro viability and the glucose-stimulation index for insulin were determined over the course of 2 weeks and analyzed by using a cross-sectional time series regression model. The sensitivity of multimodality (computed tomography [CT], ultrasonography [US], and fluorine 19 [(19)F] magnetic resonance [MR] imaging) detection was determined for fluorocapsules embedded in gel phantoms. C57BL/6 mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) islet-containing fluorocapsules and control mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) fluorocapsules without islets were monitored for human C-peptide (insulin) secretion during a period of 55 days. Mice underwent (19)F MR imaging at 9.4 T and micro-CT. Swine (n = 2) receiving 9000 PFOB capsules through renal artery catheterization were imaged with a clinical multidetector CT scanner. Signal intensity was evaluated by using a paired t test. RESULTS Compared with nonfluorinated alginate microcapsules, PFOB fluorocapsules increased insulin secretion of encapsulated human islets, with values up to 18.5% (3.78 vs 3.19) at 8-mmol/L glucose concentration after 7 days in culture (P < .001). After placement of the immunoprotected encapsulated cells into mice, a sustained insulin release was achieved with human C-peptide levels of 19.1 pmol/L ± 0.9 (standard deviation) and 33.0 pmol/L ± 1.0 for PFPE and PFOB capsules, respectively. Fluorocapsules were readily visualized with (19)F MR imaging, US imaging, and CT with research- and clinical-grade imagers for all modalities. CONCLUSION Fluorocapsules enhance glucose responsiveness and insulin secretion in vitro, enable long-term insulin secretion by xenografted islet cells in vivo, and represent a novel contrast agent platform for multimodality imaging.


Nanotechnology | 2004

Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging

M C Bautista; Oscar Bomati-Miguel; X Zhao; M.P. Morales; T. González-Carreño; R. Pérez De Alejo; Jesús Ruiz-Cabello; Sabino Veintemillas-Verdaguer

Colloidal suspensions of iron oxide and metal iron nanoparticles prepared by laser pyrolysis have been obtained by coating the particles with dextran in an aqueous media giving rise to biocompatible ferrofluids. The structural characteristics of the powders and the size of the particles and the aggregates in the colloidal suspensions have been analysed and correlated with the magnetic properties of both solids and fluids. For the first time, to our knowledge, a stable ferrofluid based on metal particles (<10?nm) has been obtained with aggregate sizes of ?nm. In comparison to iron oxide based products, this material exhibits higher saturation magnetization (45?emu?g?1) and susceptibilities (4000?emu/g?T). In addition, the nuclear magnetic resonance response of the ferrofluids has been measured in order to gain information about the influence of the crystallochemical and magnetic properties on their relaxation behaviour. The main parameter affected by the presence of the magnetic nanoparticles is the transversal relaxation time T2 and the corresponding relaxivity R2 value that is of the order of 400?(mmol/l)?1?s?1. It has been shown that R2 value increases not only by using iron metal instead of iron oxide but also by increasing the crystal size of the particles. From this study an evaluation of the possibilities of these materials as contrast agents for magnetic resonance imaging has been made.

Collaboration


Dive into the Jesús Ruiz-Cabello's collaboration.

Top Co-Authors

Avatar

Fernando Herranz

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Ignacio R. Rodriguez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Manuel Cortijo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Victoria Lechuga-Vieco

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Juan Pellico

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Germán Peces-Barba

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Rigoberto Pérez de Alejo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jeff W. M. Bulte

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge