Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Sánchez-Yagüe is active.

Publication


Featured researches published by Jesús Sánchez-Yagüe.


Platelets | 2007

Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma

Javier de Castro; Angel Hernández-Hernández; Marina C. Rodríguez; José L. Sardina; Marcial Llanillo; Jesús Sánchez-Yagüe

Objective: To analyse and compare the phospholipid and fatty acid composition of total lipids and the occurrence of lipid peroxidation and protein oxidation directly in erythrocytes or platelets from chronic obstructive pulmonary disease (COPD) and asthma patients. Patients: Fifteen consecutive outpatients with COPD (all smokers) and asthma (non-smokers) recruited during a moderate-to-severe (COPD) or moderate (asthma) exacerbation. Fifteen subjects with smoking habits similar to those of COPD patients were studied as a control group. Methods: Phospholipid and total fatty acid compositions were analysed by two-dimensional thin layer chromatography or gas chromatography–mass spectrometry, respectively. The lipid fluorescence of lipid extracts was measured by spectrofluorimetry. Protein carbonyl contents and profiles were measured by immunoblot detection. Results: No differences were found either in erythrocyte or platelet cholesterol or phospholipid levels. Only a decrease in the content of phosphatidylserine + phosphatidylinositol (P < 0.003) was detected in platelets from the asthma patients. In erythrocytes, the fatty acid profile changed in both lung pathologies, especially as regards polyunsaturated fatty acids (decreases in arachidonic and 22:4 fatty acid contents). Other observed changes were: COPD, an increase in palmitic fatty acid; asthma, an increase in oleic and decreases in eicosapentaenoic and 22:6 + 24:1 fatty acids. In platelets, the fatty acid profiles revealed many differences between both lung pathologies: COPD, a decrease in 18:1 and increases in 20:5 and 22:5 + 24:0; asthma, a decrease in 20:4 and increase in 22:6 + 24:1. In COPD vs. asthma patients, fatty acid changes were mainly detected in platelets, especially in 18-carbon species, with decreases in stearic and 18:1 fatty acids in the COPD patients. Protein oxidation levels were increased in both lung pathologies in both erythrocytes and platelets. Conclusions: COPD and asthma are associated with common or specific changes in the lipid composition of erythrocytes and/or platelets. The data point to lipid peroxidation and protein oxidation phenomena in both types of blood cell, although platelets would be more susceptible to stress.


Biochimica et Biophysica Acta | 1986

Lipid composition of subcellular particles from sheep platelets. Location of phosphatidylethanolamine and phosphatidylserine in plasma membranes and platelet liposomes.

Jesús Sánchez-Yagüe; Marcial Llanillo

The lipid composition of whole sheep platelets and their subcellular fractions was determined. The basic lipids show similar distributions in granules, microsomes, plasma membranes and whole platelets. Phospholipid (about 70% of total lipids) and cholesterol (25% of total lipids) are the principal lipid components. Free cholesterol represents about 98% of the total, whereas cholesteryl ester is a minor component. The phospholipid composition found in intact platelets and their subcellular particles is about: 35% phosphatidylethanolamine (PE), 30% phosphatidylcholine (PC), 20% sphingomyelin and 15% phosphatidylserine (PS). We also investigated aminophospholipid topology in intact platelet plasma membranes and platelet liposomes by using the nonpenetrating chemical probe trinitrobenzenesulfonic acid (TNBS), because they are the major components of total lipids. In intact platelets, PS is not accessible to TNBS during the initial 15 min of incubation, whereas 18% PE is labelled after 15 min. In contrast, in phospholipid extracted from platelets 80% PE and 67% PS react with TNBS within 5 min, while 27 and 25% PE and 15 and 19% PS from liposomes and isolated plasma membranes, respectively, were modified after 15 min of incubation. In view of this chemical modification, it is concluded that 22% of PE and less than 1% of PS are located on the external surface of intact platelet plasma membranes. The asymmetric orientation of aminophospholipids is similar between liposomes and isolated plasma membrane. PS (23 and 28%) and PE (34 and 31%) are scarcely represented outside the bilayer. The data found are consistent with the nonrandom phospholipid distribution of blood cell surface membranes.


Free Radical Biology and Medicine | 1999

Oxidative inactivation of human and sheep platelet membrane-associated phosphotyrosine phosphatase activity

Angel Hernández-Hernández; Jesús Sánchez-Yagüe; Eva M. Martı́n-Valmaseda; Marcial Llanillo

Incubation of human or sheep platelet crude membranes with xanthine oxidase/hypoxanthine in the presence of Fe2+/ADP inactivated phosphotyrosine phosphatase (PTPase, protein-tyrosine-phosphate-phosphohydrolase, EC 3.1.3.48) activity in a time-dependent manner, this inhibition being significant within 5 min of treatment. The dynamics of protein thiols differed depending on the platelet species, but in any case decreases in protein thiols were only visible 20-45 min after the start of the treatment. The inhibition of PTPase activity in general showed good a correlation with the production of thiobarbituric acid-reactive substances (TBARS). The results with several antioxidants suggest that the inhibition of PTPase activity is related to the generation of alkoxyl and/or peroxyl radicals. Furthermore, the formation of fluorescent products and changes in amino groups were observed only after long incubation times with the oxidizing agents, these fluorescent products and the residual enzyme activity remaining in the membrane fraction. Treatment of platelet membranes with trans-2-nonenal and n-heptaldehyde, but not with acetaldehyde, also inhibited membrane-associated PTPase activity. However, the amount of protein thiols was reduced only by treatment with trans-2-nonenal. Fluorescence product formation was always higher with trans-2-nonenal, these products being mainly located in the protein fraction. The results with aldehydes suggest that secondary degraded products of lipid hydroperoxides affect PTPase activity. Kinetic studies of PTPase activity indicated that with all treatments enzyme inhibition is mainly due to a decrease in the Vmax value. The results of fluorescence anisotropy measurements of labeled platelet membranes did not support the notion of a contribution of the lipid organization to peroxidation-mediated PTPase inhibition. All the above results indicate that platelet membrane-associated PTPase inhibition due to treatment with xanthine oxidase/ hypoxanthine in the presence of Fe2+/ADP is a very complex, time-dependent process, and that it is probably related, at least after long periods of peroxidation, to changes in protein thiols and amino groups. We predict that the sensitivity of PTPase to lipid peroxidation must be physiologically relevant because of the increasing importance of tyrosine phosphorylation in signal transduction, in general, and in platelet activation and aggregation in particular.


Free Radical Biology and Medicine | 2010

Membrane cholesterol contents modify the protective effects of quercetin and rutin on integrity and cellular viability in oxidized erythrocytes

José I. Sánchez-Gallego; Abel López-Revuelta; José L. Sardina; Angel Hernández-Hernández; Jesús Sánchez-Yagüe; Marcial Llanillo

Flavonoids protect cells damaged by oxidative stress. This, together with other biological activities, is governed by structural features of flavonoids and the nature and physical state of the cell membrane. We have previously proved that membrane cholesterol contents modify the protective power of quercetin and rutin against oxidative stress in erythrocytes. Here we analyzed the lipid asymmetry, the integrity, and cell viability of native and cholesterol-modified erythrocytes exposed to tert-butyl hydroperoxide in presence of both antioxidants. Our results provides clear evidence that quercetin affords better protection than rutin against lipid peroxidation, ROS generation, erythrophagocytosis and cellular instability in oxidized erythrocytes with normal and modified cholesterol contents. Both antioxidants provided a high of protection for the transbilayer aminophospholipid asymmetry, only partly preserving cell morphology in oxidized control and cholesterol-depleted erythrocytes. Cholesterol depletion reduced the protection provided by both antioxidants against phosphatidylserine externalization, erythrophagocytosis and hemolysis, which is in accordance with the lower degree of preservation against lipid peroxidation observed in oxidized cholesterol-depleted erythrocytes. This lower degree of preservation is presumably attributable to the low antioxidant contents in these erythrocyte membranes, or even to a lower efficiency of the antioxidant in a modified lipid environment due to the removal of cholesterol.


Biochimica et Biophysica Acta | 2008

Changes in the expression and dynamics of SHP-1 and SHP-2 during cerulein-induced acute pancreatitis in rats

Nancy Sarmiento; Carmen Sánchez-Bernal; Manuel Ayra; Nieves Pérez; Angel Hernández-Hernández; José J. Calvo; Jesús Sánchez-Yagüe

Protein tyrosine phosphatases (PTPs) are important regulators of cell functions but data on different PTP expression and dynamics in acute pancreatitis (AP) are very scarce. Additionally, both c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK1/2), together with intracellular cAMP levels in inflammatory cells, play an essential role in AP. In this study we have detected an increase in PTP SHP-1 and SHP-2 in the pancreas at the level of both protein and mRNA as an early event during the development of Cerulein (Cer)-induced AP in rats. Nevertheless, while SHP-2 protein returned to baseline levels in the intermediate or later phases of AP, SHP-1 protein expression remained increased throughout the development of the disease. The increase in SHP-2 protein expression was associated with changes in its subcellular distribution, with higher percentages located in the fractions enriched in lysosomes+mitochondria or microsomes. Furthermore, while the increase in SHP-2 protein was also observed in sodium-taurocholate duct infusion or bile-pancreatic duct obstruction AP, that of SHP-1 was specific to the Cer-induced model. Neutrophil infiltration did not affect the increase in SHP-1 protein, but favoured the return of SHP-2 protein to control levels, as indicated when rats were rendered neutropenic by the administration of vinblastine sulfate. Inhibition of JNK and ERK1/2 with SP600125 pre-treatment further increased the expression of both SHP-1 and SHP-2 proteins in the early phase of Cer-induced AP, while the inhibition of type IV phosphodiesterase with rolipram only suppressed the increase in SHP-2 protein expression during the same phase. Our results show that AP is associated with increases in the expression of SHP-1 and SHP-2 and changes in the dynamics of SHP-2 subcellular distribution in the early phase of Cer-induced AP. Finally, both JNK and ERK1/2 and intracellular cAMP levels are able to modulate the expression of these PTPs.


Food and Chemical Toxicology | 2011

Comparative antioxidant capacities of quercetin and butylated hydroxyanisole in cholesterol-modified erythrocytes damaged by tert-butylhydroperoxide.

José I. Sánchez-Gallego; Abel López-Revuelta; Angel Hernández-Hernández; José L. Sardina; Guillermo López-Ruano; Jesús Sánchez-Yagüe; Marcial Llanillo

Phenolic compounds are potent antioxidants that scavenge reactive oxygen species (ROS), protecting the cells against oxidative damage. Their antioxidant capacities are governed by their structural features and the nature and physical state of the cell membrane. Our study compares the protective effects of butylated hydroxyanisole (BHA) and quercetin against the cellular injury induced by oxidative stress, and the influence of membrane cholesterol contents in their antioxidant capacities, analyzing the structural changes and cellular stability of native and cholesterol-modified erythrocytes exposed to tert-butylhydroperoxide in presence of each antioxidant. The data provide clear evidence that BHA affords better protection than quercetin against ROS generation, lipid peroxidation and lipid and GSH losses in oxidized erythrocytes. However, cellular integrity and stability are better protected by quercetin owing to the hemolytic effect of BHA. Both antioxidants suppress the alterations in membrane fluidity with similar efficiency, reducing methemoglobin formation in all oxidized erythrocytes. Membrane cholesterol depletion decreases the protection against the oxidative damage provided by both antioxidants. This lower preservation may be due to low antioxidant contents, a lower antioxidant capacity, or even to an increased oxidative damage in this membrane type as a consequence of environment modifications after cholesterol depletion.


Experimental and Molecular Pathology | 2009

Platelet linoleic acid is a potential biomarker of advanced non-small cell lung cancer

Javier de Castro; Marina C. Rodríguez; Vicenta S. Martínez-Zorzano; Marcial Llanillo; Jesús Sánchez-Yagüe

New parameters that could be used as tumor markers for lung cancer would be valuable. Our aim was to analyze the fatty acid profiles of total lipids from erythrocytes and platelets from patients with advanced non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD) and asthma to reveal the fatty acids that could be used as NSCLC biomarkers. In our study, 50, 15 and 15 patients with advanced NSCLC, COPD and asthma and 50 healthy subjects were enrolled. Fatty acid profiles were investigated using gas chromatography/mass spectrometry followed by ROC (receiver operating characteristics) curves analysis to gain information about biomarkers. Sialic acid (SA) and cytokeratins were measured by the thiobarbituric acid and immunoradiometric methods respectively. Useful fatty acid markers were as follows: erythrocytes, 22:0 and linoleic acid (LA, 18:2n6); platelets, 16:0, 18:0, and LA. At the cutoff value to obtain maximum accuracy, the best biomarker was platelet LA, with higher diagnostic yields than the commonly used markers SA or cytokeratins (100%, 76%, 75% and 86% sensitivity, specificity, positive predictive value and accuracy, respectively). These findings suggest that platelet LA might be used as a biomarker of NSCLC in relation to different aspects of the disease process that now needs to be explored.


Biochimica et Biophysica Acta | 1999

Amphiphilic and hydrophilic nature of sheep and human platelet phosphotyrosine phosphatase forms

Angel Hernández-Hernández; Marcial Llanillo; Marina C. Rodríguez; F Gómez; Jesús Sánchez-Yagüe

To date, although at least 75 different PTPases (protein-tyrosine-phosphate-phosphohydrolase, EC 3.1.3.48) have been identified, those detected in platelets are rather scarce. Based on previous results from our laboratory, we investigated the existence of new PTPases in platelets. Triton X-114 phase partitioning of Triton X-100-solubilized human and sheep platelet membranes allowed PTPase to be recovered in the detergent-rich (40-35%, respectively) and -poor phases (60-65%, respectively). Sedimentation analyses of both phases from the sheep species revealed hydrophilic 6S and 3.7S, and amphiphilic 7.5S and 10.3S PTPase forms. Sedimentation analyses of human platelet membrane-associated or cytosolic PTPase revealed hydrophilic 6.7S and 4.3S, and amphiphilic 5.5S and 10.8S forms, or hydrophilic 4S, 5.9S and 6.9S forms, respectively. Western blot analysis using monoclonal antibodies (MoAb) against human PTP1B, PTP1C, PTP1D and RPTPalpha (mouse anti-human PTPase MoAbs) showed that RPTPalpha was not present in platelets and that the PTP1C type and PTP1D type (but probably not the PTP1B type) were expressed in sheep species. Immunoblots also revealed that all PTPases detected were mainly membrane-associated, with similar percentages of cellular distribution in both species. All PTPases were mainly recovered in the detergent-poor phases from the Triton X-114 phase partitioning, although PTP1D from human species was also significantly present (30%) in the detergent-rich phase. Additionally, all PTPases sedimented within the same PTPase peak in sucrose gradients (sedimentation coefficients around 4S). These findings indicate that amphiphilic and hydrophilic PTPases different from PTP1B, PTP1C, PTP1D or RPTPalpha, with higher sedimentation coefficients and with higher activity when O-phosphotyrosine or a synthetic peptide phosphorylated on tyrosine were used as substrates, are present in platelets.


Cancer Investigation | 2006

Comparison of Changes in Erythrocyte and Platelet Fatty Acid Composition and Protein Oxidation in Advanced Non-Small Cell Lung Cancer

Javier de Castro; Angel Hernández-Hernández; Marina C. Rodríguez; Marcial Llanillo; Jesús Sánchez-Yagüe

The formation of free radicals and lipid peroxidation products is linked both to carcinogenesis and tumor behavior. Blood samples from 50 patients with advanced (Stages III–IV) non-small cell lung cancer (NSCLC), and from 50 healthy volunteers were used for plasma β-thromboglobulin (β-TG) measurements, red blood cell (RBC) and platelet lipid analyses, and lipid fluorescence determinations. Samples from 15 randomly selected patients and 15 controls also were used for analysis of the expression of oxidized proteins. We observed: (a) higher levels of plasma β-TG in patients, (b) alterations in membrane fatty acids. The RBC fatty acid profile changed especially in the 18-carbon species (increases in stearic and oleic and a decrease in linoleic fatty acids), and in arachidonic acid, which also decreased significantly. The platelet fatty acid profile mainly showed a decrease in arachidonic acid and a parallel increase in palmitic fatty acid; (c) the loss of polyunsaturated fatty acids (PUFA) in RBC and platelets could be correlated with changes in lipid extract fluorescence only for platelets; (d) protein oxidation levels were increased also only in the case of platelets. The changes detected point to platelet activation and lipid peroxidation processes associated with NSCLC. The oxidative stress affected RBC and platelets differently, although changes in PUFA might still have important physiological consequences in both types of cells.


Biochimica et Biophysica Acta | 1999

Comparison between in vitro lipid peroxidation in fresh sheep platelets and peroxidative processes during sheep platelet ageing under storage at 4°C

Eva M. Martı́n-Valmaseda; Jesús Sánchez-Yagüe; Marina C. Rodríguez; Francisco P. Gómez; Marcial Llanillo

Incubation of sheep platelet crude membranes with xanthine oxidase (XO)/hypoxanthine/Fe(2+)-ADP revealed: (i) a fast peroxidative response - with a maximal linear rate of 14 nmol malondialdehyde (MDA) equivalents/mg protein, as evidenced by the thiobarbituric acid test - and a decrease in the polyunsaturated fatty acid (PUFA) content of the platelet crude membranes; (ii) a decrease in the lipid fluidity in the deep lipid core of the membranes but not at the membrane surface; (iii) a dramatic inhibitory effect on glucose 6-phosphatase (Glc-6-Pase) but not on acetylcholinesterase activity. Platelets were also aged by storage at 4 degrees C in their own plasma or in Seto additive solution. In these media, platelet aggregates were visible and the effects on platelet phospholipids, PUFA, lipid extract fluorescence, crude membrane fluidity and membrane-bound enzyme activities were assessed for comparison with those observed in in vitro lipid peroxidation. The sensitivity of membranes from stored platelets to lipid peroxidation was also assessed. Storage of platelets in plasma for 5 days was associated with different changes in their crude membranes such as decreases in arachidonic acid contents, the decrease not being avoided by the presence of phospholipase A(2) inhibitors, increases in MDA equivalents, conjugated dienes and lipid extract fluorescence, decreases in the amounts of MDA equivalents formed by platelet crude membranes treated with the oxidizing agents, changes in membrane fluidity and inhibition of Glc-6-Pase. All these alterations were less pronounced or even abolished after platelet storage in Seto. These findings suggest that platelet lipid peroxidation due to XO/hypoxanthine/Fe(2+)-ADP and platelet membrane alterations observed after platelet ageing under storage at 4 degrees C share common features. Also, as regards the prevention of peroxidative processes, Seto solution permits better storage of sheep platelets than plasma.

Collaboration


Dive into the Jesús Sánchez-Yagüe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.A. Cabezas

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge