Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jetsumon Sattabongkot is active.

Publication


Featured researches published by Jetsumon Sattabongkot.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Journal of Clinical Microbiology | 2007

Detection of Four Plasmodium Species by Genus- and Species-Specific Loop-Mediated Isothermal Amplification for Clinical Diagnosis

Eun-Taek Han; Risa Watanabe; Jetsumon Sattabongkot; Benjawan Khuntirat; Jeeraphat Sirichaisinthop; Hideyuki Iriko; Ling Jin; Satoru Takeo; Takafumi Tsuboi

ABSTRACT Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method, was developed for the clinical detection of four species of human malaria parasites: Plasmodium falciparum, P. vivax, P. malariae, and P. ovale. We evaluated the sensitivity and specificity of LAMP in comparison with the results of microscopic examination and nested PCR. LAMP showed a detection limit (analytical sensitivity) of 10 copies of the target 18S rRNA genes for P. malariae and P. ovale and 100 copies for the genus Plasmodium, P. falciparum, and P. vivax. LAMP detected malaria parasites in 67 of 68 microscopically positive blood samples (sensitivity, 98.5%) and 3 of 53 microscopically negative samples (specificity, 94.3%), in good agreement with the results of nested PCR. The LAMP reactions yielded results within about 26 min, on average, for detection of the genus Plasmodium, 32 min for P. falciparum, 31 min for P. vivax, 35 min for P. malariae, and 36 min for P. ovale. Accordingly, in comparison to the results obtained by microscopy, LAMP had a similar sensitivity and a greater specificity and LAMP yielded results similar to those of nested PCR in a shorter turnaround time. Because it can be performed with a simple technology, i.e., with heat-treated blood as the template, reaction in a water bath, and inspection of the results by the naked eye because of the use of a fluorescent dye, LAMP may provide a simple and reliable test for routine screening for malaria parasites in both clinical laboratories and malaria clinics in areas where malaria is endemic.


Infection and Immunity | 2008

Wheat Germ Cell-Free System-Based Production of Malaria Proteins for Discovery of Novel Vaccine Candidates

Takafumi Tsuboi; Satoru Takeo; Hideyuki Iriko; Ling Jin; Masateru Tsuchimochi; Shusaku Matsuda; Eun-Taek Han; Hitoshi Otsuki; Osamu Kaneko; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Tatsuya Sawasaki; Motomi Torii; Yaeta Endo

ABSTRACT One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 μg/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum. The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.


PLOS Medicine | 2007

Plasmodium vivax Invasion of Human Erythrocytes Inhibited by Antibodies Directed against the Duffy Binding Protein

Brian T. Grimberg; Rachanee Udomsangpetch; Jia Xainli; Amy M. McHenry; Tasanee Panichakul; Jetsumon Sattabongkot; Liwang Cui; Moses J. Bockarie; Chetan E. Chitnis; John H. Adams; Peter A. Zimmerman; Christopher L. King

Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection.


Infection and Immunity | 2000

Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes.

Hajime Hisaeda; Anthony Stowers; Takafumi Tsuboi; William E. Collins; Jetsumon Sattabongkot; Natavadee Suwanabun; Motomi Torii; David C. Kaslow

ABSTRACT Transmission-blocking vaccines are one strategy for controlling malaria, whereby sexual-stage parasites are inhibited from infecting mosquitoes by human antibodies. To evaluate whether the recently clonedPlasmodium vivax proteins Pvs25 and Pvs28 are candidates for a transmission-blocking vaccine, the molecules were expressed in yeast as secreted recombinant proteins. Mice vaccinated with these proteins adsorbed to aluminum hydroxide developed strong antibody responses against the immunogens, although for Pvs28, this response was genetically restricted. Antisera against both recombinant Pvs25 and Pvs28 recognized the corresponding molecules expressed by cultured sexual-stage parasites isolated from patients with P. vivaxmalaria. The development of malaria parasites in mosquitoes was completely inhibited when these antisera were ingested with the infected blood meal. Pvs25 and Pvs28, expressed inSaccharomyces cerevisiae, are as yet the only fully characterized transmission-blocking vaccine candidates against P. vivax that induce such a potent antiparasite response.


Malaria Journal | 2006

Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand

Russell E. Coleman; Jetsumon Sattabongkot; Sommai Promstaporm; Nongnuj Maneechai; Bousaraporn Tippayachai; Ampornpan Kengluecha; Nattawan Rachapaew; Gabriela E. Zollner; Robert Scott Miller; Jefferson A. Vaughan; Krongtong Thimasarn; Benjawan Khuntirat

ObjectiveThe main objective of this study was to compare the performance of nested PCR with expert microscopy as a means of detecting Plasmodium parasites during active malaria surveillance in western Thailand.MethodsThe study was performed from May 2000 to April 2002 in the village of Kong Mong Tha, located in western Thailand. Plasmodium vivax (PV) and Plasmodium falciparum (PF) are the predominant parasite species in this village, followed by Plasmodium malariae (PM) and Plasmodium ovale (PO). Each month, fingerprick blood samples were taken from each participating individual and used to prepare thick and thin blood films and for PCR analysis.ResultsPCR was sensitive (96%) and specific (98%) for malaria at parasite densities ≥ 500/μl; however, only 18% (47/269) of P. falciparum- and 5% (20/390) of P. vivax-positive films had parasite densities this high. Performance of PCR decreased markedly at parasite densities <500/μl, with sensitivity of only 20% for P. falciparum and 24% for P. vivax at densities <100 parasites/μl.ConclusionAlthough PCR performance appeared poor when compared to microscopy, data indicated that the discrepancy between the two methods resulted from poor performance of microscopy at low parasite densities rather than poor performance of PCR. These data are not unusual when the diagnostic method being evaluated is more sensitive than the reference method. PCR appears to be a useful method for detecting Plasmodium parasites during active malaria surveillance in Thailand.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


The Journal of Infectious Diseases | 2004

The Deformability of Red Blood Cells Parasitized by Plasmodium falciparum and P. vivax

Rossarin Suwanarusk; Brian M. Cooke; Arjen M. Dondorp; Kamolrat Silamut; Jetsumon Sattabongkot; Nicholas J. White; Rachanee Udomsangpetch

Red blood cells (RBCs) must deform considerably during their multiple passages through the microvasculature and the sinusoids of the spleen. RBCs infected with Plasmodium falciparum (Pf-IRBCs) become increasingly rigid as they mature but avoid splenic clearance by sequestering in venules and capillaries. In contrast, RBCs infected with P. vivax (Pv-IRBCs) do not sequester. We compared the effects of P. vivax and P. falciparum infection on RBC deformability in a laminar shear flow system. Pf-IRBCs became more rigid as the parasite matured, but equivalent maturation of Pv-IRBCs resulted in a doubling of flexibility. Coincidentally, the IRBC surface area increased from 56.7+/-1.3 microm2 to 74.7+/-0.6 microm2 to 90.9+/-1.1 microm2 in ring-, trophozoite-, and schizont-stage Pv-IRBCs, respectively, whereas Pf-IRBCs did not increase in size. P. vivax increases the deformability of IRBCs and thereby avoids splenic entrapment.


Journal of Medical Entomology | 2004

Infectivity of Asymptomatic Plasmodium-Infected Human Populations to Anopheles dirus Mosquitoes in Western Thailand

Russell E. Coleman; Chalermpon Kumpitak; Alongkot Ponlawat; Nongnuj Maneechai; Vichit Phunkitchar; Nattawan Rachapaew; Gabriella Zollner; Jetsumon Sattabongkot

Abstract The infectivity of Plasmodium-infected humans in western Thailand was estimated by feeding laboratory-reared Anopheles dirus Peyton and Harrison mosquitoes on venous blood placed in a membrane-feeding apparatus. Between May 2000 and November 2001, a total of 6,494 blood films collected during an active malaria surveillance program were checked by microscopy for the presence of Plasmodium parasites: 3.3, 4.5, and 0.1% of slides were P. falciparum- (Pf), P. vivax- (Pv), and P. malariae (Pm)-positive. Venous blood was collected from 70, 52, 6, and 4 individuals infected with Pf, Pv, Pm, and mixed Pf/Pv, respectively, with 167 uninfected individuals serving as negative controls. Only 10% (7/70), 13% (7/52), and 0% (0/6) of membrane feeds conducted on Pf-, Pv-, and Pm-infected blood yielded infected mosquitoes. One percent (2/167) of microscope-negative samples infected mosquitoes; however, both samples were subsequently determined to be Pf-positive by polymerase chain reaction. Gametocytes were observed in only 29% (4/14) of the infectious samples. All infections resulted in low oocyst loads (average of 1.2 oocysts per positive mosquito). Only 4.5% (10/222) of mosquitoes fed on the seven infectious Pf samples developed oocysts, whereas 2.9% (9/311) of mosquitoes fed on the seven infectious Pv samples developed oocysts. The probability of a mosquito becoming infected with Pf or Pv after a blood meal on a member of the human population in Kong Mong Tha was estimated to be 1 in 6,700 and 1 in 5,700, respectively. The implications toward malaria transmission in western Thailand are discussed.


Antimicrobial Agents and Chemotherapy | 2003

Simple In Vitro Assay for Determining the Sensitivity of Plasmodium vivax Isolates from Fresh Human Blood to Antimalarials in Areas where P. vivax Is Endemic

Bruce Russell; Rachanee Udomsangpetch; Karl H. Rieckmann; Barbara M. Kotecka; Russell E. Coleman; Jetsumon Sattabongkot

ABSTRACT The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P. falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB+ serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% ± 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.

Collaboration


Dive into the Jetsumon Sattabongkot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liwang Cui

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell E. Coleman

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Eun-Taek Han

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Feng Lu

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Guiyun Yan

University of California

View shared research outputs
Top Co-Authors

Avatar

Bo Wang

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge