Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jgm Hans Kuerten is active.

Publication


Featured researches published by Jgm Hans Kuerten.


Physics of Fluids | 2006

Subgrid modeling in particle-laden channel flow

Jgm Hans Kuerten

Direct numerical simulation (DNS) and large-eddy simulation (LES) of particle-laden turbulent channel flow, in which the particles experience a drag force, are investigated for two subgrid models and several Reynolds and Stokes numbers. In this flow, turbophoresis leads to an accumulation of particles near the walls. The objectives of the work are to investigate the accuracy of the subgrid models studied with respect to particle behavior and to explain the observed particle behavior predicted by the different models. The focus is on particle dispersion and mean particle motion in the direction normal to the walls of the channel. For a low Reynolds number, it is shown that the turbophoresis and particle velocity fluctuations are reduced compared to DNS, if the filtered fluid velocity calculated in the LES is used in the particle equation of motion. This is a combined effect of the disregard of the subgrid scales in the fluid velocity and the inadequacy of the subgrid model. Better agreement with DNS is obt...


Cryogenics | 1985

Thermodynamic properties of liquid 3He-4He mixtures at zero pressure for temperatures below 250 mK and 3He concentrations below 8%

Jgm Hans Kuerten; Cam Castelijns; de Atam Fons Waele; H. M. Gijsman

We calculated the thermodynamic quantities of dilute liquid 3He-4He mixtures, starting from experimental values of the specific heat and the osmotic pressure. The calculations are confined to temperatures below 250 mK and 3He concentrations below 8% at zero pressure. Some results are especially useful for dilution refrigeration. Contrary to the calculations previously performed by Radebaugh, our results are in good agreement with the experimental date on both the osmotic pressure and the osmotic enthalpy.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

Huanshu Tan; C Christian Diddens; Pengyu Lv; Jgm Hans Kuerten; Xuehua Zhang; Detlef Lohse

Significance The evaporation of an Ouzo droplet is a daily life phenomenon, but the outcome is amazingly rich and unexpected: Here we reveal the four different phases of its life with phase transitions in-between and the physics that govern this phenomenon. The Ouzo droplet may be seen as a model system for any ternary mixture of liquids with different volatilities and mutual solubilities. Our work may open up numerous applications in (medical) diagnostics and in technology, such as coating or for the controlled deposition of tiny amounts of liquids, printing of light-emitting diode (LED) or organic LED devices, or phase separation on a submicron scale. Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.


Physics of Fluids | 2007

Determination of the coefficients of Langevin models for inhomogeneous turbulent flows by three-dimensional particle tracking velocimetry and direct numerical simulation

Rje Raymond Walpot; van der Cwm Cees Geld; Jgm Hans Kuerten

A promising and, in terms of computer power, low-cost way of describing flow properties such as turbulent diffusion is by Langevin models. The development of such models requires knowledge of Lagrangian statistics of turbulent flows. Our aim is to determine Lagrangian statistics of inhomogeneous flows, as most turbulent flows found in practical applications are inhomogeneous. The present paper describes how a Lagrangian measurement technique, three-dimensional particle tracking velocimetry, has been developed and applied to the most common example of inhomogeneous flows: turbulent pipe flow. A new direct numerical simulation (DNS) code has been developed and experimental results have been compared with results of this DNS code. The results concern Eulerian and Lagrangian velocity statistics at two Reynolds numbers. Based on these, coefficients of the Langevin model have been determined and physical consequences for Langevin modeling and turbulent dispersion have been explained.


Journal of Colloid and Interface Science | 2013

Numerical simulation of the drying of inkjet-printed droplets

Dp Daniel Siregar; Jgm Hans Kuerten; van der Cwm Cees Geld

In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the work by Deegan, Fischer and Kuerten by taking into account convection, diffusion and adsorption of the solute in order to describe more accurately the surface coverage on the substrate. A spherically shaped droplet is considered such that the model can be formulated as an axially symmetric problem. The droplet dynamics is driven by the combined action of surface tension and evaporation. The fluid flow in the droplet is modeled by the Navier-Stokes equation and the continuity equation, where the lubrication approximation is applied. The rate of evaporation is determined by the distribution of vapor pressure in the air surrounding the droplet. Numerical results are compared with experimental results for droplets of various sizes.


Journal of Turbulence | 2008

Direct numerical simulation of the motion of particles in rotating pipe flow

van Bpm Bart Esch; Jgm Hans Kuerten

In this paper the motion of particles in rotating pipe flow is studied for various flow cases by means of direct numerical simulation. Compared to flow in a non-rotating pipe, the Navier–Stokes equation contains as only extra term the Coriolis force when the equation is considered in a rotating frame of reference. Particles in the flow also experience a centrifugal force, which drives them to one side of the wall of the pipe. The flow is characterized by two Reynolds numbers for the mean axial velocity and the rotation rate, respectively. Among the cases studied are one in which the flow without rotation would be laminar and rotation leads to turbulence and another one for which Poiseuille flow is unstable but instead of transition to a turbulent state, a time-dependent laminar flow results. In all cases studied a counter-rotating vortex is present. The simulation results are used to calculate the collection efficiency of the rotational phase separator (RPS) under turbulent flow conditions. The RPS is a device to separate liquid or solid particles from a lighter or heavier fluid by means of centrifugation in a bundle of channels which rotate around a common axis. The results show that, compared to Poiseuille flow, the collection efficiency for larger particles decreases due to the combined action of the vortex and turbulent velocity fluctuations, while it is unchanged for smaller particles.


Journal of Fluid Mechanics | 2017

Evaporating pure, binary and ternary droplets: Thermal effects and axial symmetry breaking

C Christian Diddens; Huanshu Tan; Pengyu Lv; Michel Versluis; Jgm Hans Kuerten; Xuehua Zhang; Detlef Lohse

The Greek aperitif Ouzo is not only famous for its specific anise-flavoured taste, but also for its ability to turn from a transparent miscible liquid to a milky-white coloured emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions (Tan et al., Proc. Natl Acad. Sci. USA, vol. 113 (31), 2016, pp. 8642-8647). Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-particle-image-velocimetry measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence.


Physics of Fluids | 2013

A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow

Wr Wiktor Michalek; Jgm Hans Kuerten; Jch Jos Zeegers; R Raoul Liew; J Pozorski; Bernardus J. Geurts

We develop a hybrid model for large-eddy simulation of particle-laden turbulent flow, which is a combination of the approximate deconvolution model for the resolved scales and a stochastic model for the sub-grid scales. The stochastic model incorporates a priori results of direct numerical simulation of turbulent channel flow, which showed that the parameters in the stochastic model are quite independent of Reynolds and Stokes number. In order to correctly predict the flux of particles towards the walls an extra term should be included in the stochastic model, which corresponds to the term related to the well-mixed condition in Langevin models for particle dispersion in inhomogeneous turbulent flow. The model predictions are compared with results of direct numerical simulation of channel flow at a frictional Reynolds number of 950. The inclusion of the stochastic forcing is shown to yield a significant improvement over the approximate deconvolution model for the particles alone when combined with a Stokes dependent weight-factor for the well-mixed term.


Journal of Fluid Mechanics | 2009

Axisymmetric dynamics of a bubble near a plane wall

van der Cwm Cees Geld; Jgm Hans Kuerten

Explicit expressions for the added mass tensor of a bubble in strongly nonlinear deformation and motion near a plane wall are presented. Time evolutions and interconnections of added mass components are derived analytically and analysed. Interface dynamics have been predicted with two methods, assuming that the flow is irrotational, that the fluid is perfect and with the neglect of gravity. The assumptions that gravity and viscosity are negligible are verified by investigating their effects and by quantifying their impact in some cases of strong deformation, and criteria are presented to specify the conditions of their validity. The two methods are an analytical one and the boundary element method, and good agreement is found. It is explained why a strongly deforming bubble is decelerated. The classical Rayleigh– Plesset equation is extended with terms to account for arbitrary, axisymmetric deformation and to account for the proximity of a wall. An expression for the corresponding cycle frequency that is valid in the vicinity of the wall is derived. An equation similar to the Rayleigh–Plesset equation is presented for the most important anisotropic deformation mode. Well-known expressions for the angular frequencies of some periodic solutions without a wall follow easily from the equations presented. A periodically deforming bubble without initial velocity of the centroid and without a dominating isotropic deformation component is eventually always driven towards the wall. A simplified equation of motion of the centre of a deforming bubble is presented. If desired, full deformation computations can be speeded up by selecting an artificially low value of the polytropic constant Cp/Cv.


International Journal of Multiphase Flow | 2014

Comparison of DNS of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition

A Bukhvostova; E Emanuele Russo; Jgm Hans Kuerten; Bernardus J. Geurts

Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We compare simulation results obtained with an incompressible formulation with those obtained for compressible flow at various low values of Mach number. We discuss differences in fluid flow, heat- and mass transfer and dispersed droplet properties. Results for flow properties such as mean velocity obtained with the compressible model converge quickly to the incompressible results in case the Mach number is reduced. In contrast, thermal properties such as the heat transfer, characterized by the Nusselt number, display a systematic difference between the two formulations on the order of 15%, even in the low-Mach limit. This shows the necessity of the use of a compressible formulation for accurate prediction of heat transfer, even in case of an initial relative humidity of 100%. Mass transfer properties display a difference between the models on the order of 5%, for example in the prediction of the droplet mean diameter near the walls.

Collaboration


Dive into the Jgm Hans Kuerten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

van der Cwm Cees Geld

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jch Jos Zeegers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

R Raoul Liew

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wr Wiktor Michalek

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

H. M. Gijsman

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

A Alessandro Pecenko

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

E Emanuele Russo

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

de Atam Fons Waele

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge