Ji-Cheng Li
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji-Cheng Li.
PLOS ONE | 2013
Yuxiang Zhang; Tingting Jiang; Xiuyun Yang; Yun Xue; Chong Wang; Jiyan Liu; Xing Zhang; Zhong-Liang Chen; Mengyuan Zhao; Ji-Cheng Li
Background A large number of studies have investigated whether polymorphisms in the Toll-like receptor (TLR) genes are implicated in susceptibility to tuberculosis (TB) in different populations. However, the results are inconsistent and inconclusive. Methods A literature search was conducted using the PubMed, EMBASE, Medline (Ovid), ISI Web of Knowledge and Chinese National Knowledge Infrastructure (CNKI). A meta-analysis on the associations between the TLR1 G1805T, TLR2 T597C, T1350C, G2258A, and TLR6 C745T polymorphisms and TB risk was carried out by comparison using different genetic models. Results In total, 16 studies from 14 articles were included in this review. In meta-analysis, significant associations were observed between the TLR2 2258AA (AA vs. AG+AG, OR 5.82, 95% CI 1.30–26.16, Pu200a=u200a0.02) and TLR6 745TT (TT vs. CT+CC, OR 0.61, 95% CI 0.39–0.97, Pu200a=u200a0.04) polymorphisms and TB risk. In the subgroup analysis by ethnicity, Africans and American Hispanic subjects with the TLR1 1805T allele had an increased susceptibility, whereas Asian and European subjects with the TLR2 2258A allele had an increased susceptibility to TB. Conclusions The meta-analysis indicated that TLR2 G2258A is associated with increased TB risk, especially in Asians and Europeans. TLR1 G1805T is associated with increased TB in Africans and American Hispanics. TLR6 C745T is associated with decreased TB risk. Our systematic review and meta-analysis reported an interesting preliminary conclusion, but this must be validated by future large-scale and functional studies in different populations.
PLOS ONE | 2013
Xing Zhang; Jing Guo; Shufeng Fan; Yanyuan Li; Li-Liang Wei; Xiuyun Yang; Tingting Jiang; Zhong-Liang Chen; Chong Wang; Jiyan Liu; Ze-Peng Ping; Dandan Xu; Jiaxiong Wang; Zhong-Jie Li; Yunqing Qiu; Ji-Cheng Li
Background It is very difficult to prevent pulmonary tuberculosis (TB) due to the lack of specific and diagnostic markers, which could lead to a high incidence of pulmonary TB. We screened the differentially expressed serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of pulmonary TB. Methods In this study, serum miRNAs were screened using the Solexa sequencing method as the potential biomarkers for the diagnosis of pulmonary TB. The stem-loop quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was used to verify differentially expressed serum miRNAs. The receiver operating characteristic (ROC) curve and logistic regression model were used to analyze the sensitivity and specificity of the single miRNA and a combination of miRNAs for diagnosis, respectively. Using the predicted target genes, we constructed the regulatory networks of miRNAs and genes that were related to pulmonary TB. Results The Solexa sequencing data showed that 91 serum miRNAs were differentially expressed in pulmonary TB patients, compared to healthy controls. Following qRT-PCR confirmation, six serum miRNAs (hsa-miR-378, hsa-miR-483-5p, hsa-miR-22, hsa-miR-29c, hsa-miR-101 and hsa-miR-320b) showed significant difference among pulmonary TB patients, healthy controls (P<0.001) and differential diagnosis groups (including patients with pneumonia, lung cancer and chronic obstructive pulmonary disease) (P<0.05). The logistic regression analysis of a combination of six serum miRNAs revealed that the sensitivity and the specificity of TB diagnosis were 95.0% and 91.8% respectively. The miRNAs-gene regulatory networks revealed that several miRNAs may regulate some target genes involved in immune pathways and participate in the pathogenesis of pulmonary TB. Conclusion Our study suggests that a combination of six serum miRNAs have great potential to serve as non-invasive biomarkers of pulmonary TB.
International Journal of Biological Sciences | 2012
Xiang Li; Jiaxiong Wang; Zaiyuan Ye; Ji-Cheng Li
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood. Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS. Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy. Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer.
Proteomics | 2014
Dandan Xu; Dan-Feng Deng; Xiang Li; Li-Liang Wei; Yanyuan Li; Xiuyun Yang; Wei Yu; Chong Wang; Tingting Jiang; Zhong-Jie Li; Zhong-Liang Chen; Xing Zhang; Jiyan Liu; Ze-Peng Ping; Yunqing Qiu; Ji-Cheng Li
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.
International Journal of Biological Sciences | 2012
Xing Zhang; Feng Jiang; Li-Liang Wei; Fujian Li; Jiyan Liu; Chong Wang; Menyuan Zhao; Tingting Jiang; Dandan Xu; Dapeng Fan; Xiaojun Sun; Ji-Cheng Li
Mannose receptor is a member of the C-type lectin receptor family involved in pathogen molecular-pattern recognition, and plays a critical role in shaping host immune response. Single nucleotide polymorphisms (SNPs) in the MRC1 gene may affect expression levels and differences in the structure and function of proteins in different individuals, thereby affecting individual susceptibility to pulmonary tuberculosis. However, to date, MRC1 polymorphisms associated with susceptibility to pulmonary tuberculosis have not yet been reported. The present study aimed to investigate potential associations of SNPs in the MRC1 gene with pulmonary tuberculosis in a Chinese population. Six SNPs (G1186A, G1195A, T1212C, C1221G, C1303T and C1323T) in exon 7 of the MRC1 gene were genotyped using the PCR and DNA sequencing methods in the pulmonary tuberculosis patients and the healthy controls. Linkage disequilibrium analysis was performed between polymorphic sites. The study found that the allele frequency of G1186A (rs34039386) of the MRC1 gene in a Chinese population was higher in the pulmonary tuberculosis group than the healthy control group. There was a significant difference in frequency distribution between the two groups (P = 0.037; OR = 0.76; 95% CI, 0.58-0.98). Genotypic analysis also indicated that the AG genotypes in a Chinese population were significantly correlated with pulmonary tuberculosis (P < 0.01; OR = 0.57; 95% CI, 0.37-0.87). After adjustment for age and gender, G1186A sites were found to be dominant (P < 0.01; OR = 0.59; 95% CI, 0.40-0.87), over-dominant (P = 0.045; OR = 0.69; 95% CI, 0.47-0.99) and additive models (P = 0.041; OR = 0.76; 95% CI, 0.59-0.99) in association with pulmonary tuberculosis. But, no association was found between the other 5 SNPs (G1195A, T1212C, C1221G, C1303T and C1323T) and tuberculosis (P > 0.05). This study is the first to report that genetic variants in the MRC1 gene can be associated with pulmonary tuberculosis in a Chinese population, and may reduce the risk of infecting pulmonary tuberculosis. This also provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.
BMC Infectious Diseases | 2013
Jiyan Liu; Tingting Jiang; Li-Liang Wei; Xiuyun Yang; Chong Wang; Xing Zhang; Dandan Xu; Zhong-Liang Chen; Fuquan Yang; Ji-Cheng Li
BackgroundNoninvasive and convenient biomarkers for early diagnosis of tuberculosis (TB) remain an urgent need. The aim of this study was to discover and identify potential biomarkers specific for TB.MethodsThe surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) combined with weak cation exchange (WCX) magnetic beads was used to screen serum samples from 180 cases of TB and 211 control subjects. A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by reverse phase-high performance liquid chromatography (RP-HPLC), identified by MALDI-TOF MS, LC-MS/MS and validated using enzyme-linked immunosorbent assay (ELISA).ResultsA total of 35 discriminating m/z peaks were detected that were related to TB (Pu2009<u20090.01). The model of biomarkers based on the four biomarkers (2554.6, 4824.4, 5325.7, and 8606.8xa0Da) was established which could distinguish TB from controls with the sensitivity of 83.3% and the specificity of 84.2%. The candidate biomarker with m/z of 2554.6xa0Da was found to be up-regulated in TB patients, and was identified as a fragment of fibrinogen, alpha polypeptide isoform alpha-E preproprotein. Analysis in 22 patients with TB showed increased fibrinogen degradation product (FDP) (5,005u2009±u20091,297 vs. 4,010u2009±u20091,181xa0ng/mL, Pu2009<u20090.05) and in 142 patients showed elevated plasma fibrinogen levels.ConclusionsA diagnostic model for TB with high sensitivity and specificity was developed using mass spectrometry combined with magnetic beads. Fibrinogen was identified as a potential biomarker for TB and showed diagnostic values in clinical application.
Scientific Reports | 2015
Chong Wang; Li-Liang Wei; Li-Ying Shi; Zhi-Fen Pan; Xiao-Mei Yu; Tian-Yu Li; Chang-Ming Liu; Ze-Peng Ping; Tingting Jiang; Zhong-Liang Chen; Lian-Gen Mao; Zhong-Jie Li; Ji-Cheng Li
Rapid and efficient methods for the determination of cured tuberculosis (TB) are lacking. A total of 85 differentially expressed serum proteins were identified by iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) analysis (fold change >1.50 or <0.60, Pu2009<u20090.05). We validated albumin (ALB), Rho GDP-dissociation inhibitor 2 (ARHGDIB), complement 3 (C3), ficolin-2 (FCN2), and apolipoprotein (a) (LPA) using the enzyme-linked immunosorbent assay (ELISA) method. Significantly increased ALB and LPA levels (Pu2009=u20090.036 and Pu2009=u20090.012, respectively) and significantly reduced ARHGDIB, C3, and FCN2 levels (Pu2009<u20090.001, Pu2009=u20090.035, and Pu2009=u20090.018, respectively) were observed in cured TB patients compared with untreated TB patients. In addition, changes in ALB and FCN2 levels occurred after 2 months of treatment (Pu2009<u20090.001 and Pu2009=u20090.030, respectively). We established a cured TB model with 87.10% sensitivity, 79.49% specificity, and an area under the curve (AUC) of 0.876. The results indicated that ALB, ARHGDIB, C3, FCN2, and LPA levels might serve as potential biomarkers for cured TB. Our study provides experimental data for establishing objective indicators of cured TB and also proposes potential markers for evaluating the efficacy of anti-TB drugs.
BMC Infectious Diseases | 2012
Mengyuan Zhao; Feng Jiang; Wanjiang Zhang; Fujian Li; Li-Liang Wei; Jiyan Liu; Yun Xue; Xiling Deng; Fang Wu; Le Zhang; Xing Zhang; Yuxiang Zhang; Dapeng Fan; Xiaojun Sun; Tingting Jiang; Ji-Cheng Li
BackgroundThe present study aimed to investigate the genetic polymorphisms in exon 4 of the NOD2 gene in tuberculosis patients and healthy controls, in order to clarify whether polymorphisms in the NOD2 gene is associated with tuberculosis.MethodsA case-control study was performed on the Chinese Han, Uygur and Kazak populations. Exon 4 of the NOD2 gene was sequenced in 425 TB patients and 380 healthy controls to identify SNPs.ResultsThe frequency of T/G genotypes for the Arg587Arg (CGT → CGG) single nucleotide polymorphism (SNP) in NOD2 was found to be significantly higher in the Uygur (34.9%) and Kazak (37.1%) populations than the Han population (18.6%). Also, the frequency of G/G genotypes for the Arg587Arg SNP was significantly higher in the Uyghur (8.3%) and Kazak (5.4%) populations than the Han population (0.9%). Meanwhile, no significant difference was found in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Uyghur and Kazak populations (P > 0.05) whereas, a significant difference was observed in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Han population (P < 0.01). The odd ratio of 2.16 (95% CI = 1.31-3.58; P < 0.01) indicated that the Arg587Arg SNP in NOD2 may be associated with susceptibility to tuberculosis in the Chinese Han population.ConclusionsOur study is the first to demonstrate that the Arg587Arg SNP in NOD2 is a new possible risk factor for tuberculosis in the Chinese Han population, but not in the Uyghur and Kazak populations. Our results may reflect racial differences in genetic susceptibility to tuberculosis.
Journal of Ethnopharmacology | 2014
Jiyan Liu; Yanyuan Li; Li-Liang Wei; Xiuyun Yang; Zhensheng Xie; Tingting Jiang; Chong Wang; Xing Zhang; Dandan Xu; Zhong-Liang Chen; Fuquan Yang; Ji-Cheng Li
ETHNOPHARMACOLOGICAL RELEVANCEnChemotherapy is the mainstay of modern tuberculosis (TB) control. Traditional Chinese Medicine (TCM) can enhance the effect of anti-TB drug, promote the absorption of the foci in the lung and reduce drug toxicity. In TCM, the determination of treatment is based on ZHENG (also called TCM syndrome). To establish a diagnostic model by using proteomics technology in order to identify potential biomarkers for TCM syndromes of TB.nnnMATERIALS AND METHODSnThe surface-enhanced laser desorption ionization time of flight mass spectrometer (SELDI-TOF MS) combined with weak cation exchange (WCX) magnetic beads was used to screen serum samples from 71 cases of deficiency of lung yin syndrome (DLYS), 64 cases of fire (yang) excess yin deficiency syndrome (FEYDS) and 45 cases of deficiency of both qi and yin syndrome (DQYS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by reverse phase-high performance liquid chromatograph (RP-HPLC), identified by MALDI-TOF MS, LC-MS/MS and validated by ProteinChip Immunoassays.nnnRESULTSnA total of 74 discriminating m/z peaks (P<0.001) among three TCM syndromes of TB were detected. A diagnostic model for the TCM syndrome of TB based on the five biomarkers (3961.7, 4679.7, 5646.4, 8891.2 and 9416.7 m/z) was established which could discriminate DLYS, FEYDS and DQYS patients with an accuracy of 74.0%, 72.5%, and 96.7%, respectively. The candidate biomarker with m/z of 9416.7 was identified as a fragment of apolipoprotein C-III (apoC-III) by MALDI-TOF-MS and LC-MS/MS.nnnCONCLUSIONnThe TCM syndrome diagnostic model of TB could successfully distinguish the three TCM syndromes of TB patients. This provided a biological basis for the determination of treatment based on different TCM syndromes of TB. ApoC-III was identified as a potential biomarker for TCM syndromes of TB and revealed the biochemical basis and pathogenesis of TCM syndromes in TB.
International Journal of Biological Sciences | 2012
Chong Wang; Tingting Jiang; Li-Liang Wei; Fujian Li; Xiaojun Sun; Dapeng Fan; Jiyan Liu; Xing Zhang; Dandan Xu; Zhong-Liang Chen; Zhong-Jie Li; Xiaoyan Fu; Ji-Cheng Li
The cytotoxic T lymphocyte antigen-4 (CTLA4) gene is a key negative regulator of the T lymphocyte immune response. It has been found that CTLA4 +49A>G (rs231775), +6230G>A (rs3087243), and 11430G>A (rs11571319) polymorphisms are associated with susceptibility to many autoimmune diseases, and can down-regulate the inhibition of cellular immune response of CTLA4. Three SNPs in CTLA4 were genotyped by using the PCR and DNA sequencing methods in order to reveal the susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. We found that the frequency of CTLA4 +49AG genotype in the pulmonary tuberculosis patients (38.42%) was significantly lower than that of the healthy controls (49.77%), (Pcor=0.038, OR 0.653, 95% CI 0.436-0.978). But, no associations were found between the other 2 SNPs (+6230G>A, 11430G>A) and tuberculosis (P>0.05). Haplotype analysis showed that the frequency of haplotype AGG in the healthy controls group (6.9%) was significantly higher than the pulmonary tuberculosis patients group (1.4%), (global P=0.005, Pcor=0.0002, OR 0.183, 95% CI 0.072-0.468). In addition, haplotype GGA was found to be significantly related to tuberculosis with double lung lesion rather than single lung lesion (Pcor=0.042). This study is the first to report that genetic variants in the CTLA4 gene can be associated with pulmonary tuberculosis in Southern Han Chinese, and CTLA4 +49AG genotype as well as haplotype AGG may reduce the risk of being infected with pulmonary tuberculosis. The GGA haplotype was related to tuberculosis with double lung lesion, which provides a new experimental basis to clarify the pathogenesis of pulmonary tuberculosis.