Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji'en Zhang is active.

Publication


Featured researches published by Ji'en Zhang.


American Journal of Science | 2010

Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage

Wenjiao Xiao; Qigui Mao; Brian F. Windley; Chunming Han; Junfeng Qu; Ji'en Zhang; Songjian Ao; Qianqian Guo; Nathan Cleven; Shoufa Lin; Yehua Shan; Jiabao Li

The Beishan orogenic collage is located in the southernmost part of the Altaids, and connects the Southern Tien Shan suture to the west with the Solonker suture to the east. The orogen was previously regarded as early Paleozoic in age in contrast to the surrounding southern Altaid collages, which are Late Paleozoic or even Early Mesozoic. This paper reviews the tectonic units of the Beishan orogen, which along a north-south traverse consists of several arcs and ophiolitic mélanges. These tectonic units were thrust imbricated and overprinted by strike-slip faulting during Permian-Triassic times, and the youngest strata involved in the deformation are Permian. Stitching plutons are Late Permian in age. Peaks of magmatic-metamorphic-tectonic activity, and paleomagnetic and paleogeographic data indicate that the Beishan orogenic collage evolved by development of several, Early to Mid-Paleozoic arcs in different parts of the Paleoasian Ocean. The Late Paleozoic collage is characterized by three active continental margins or island arcs that are separated by two ophiolitic mélanges. The northernmost active margin is represented by the Queershan arc, which may have lasted until the Permian. The Shibanshan unit is the southernmost, subduction-related continental arc along the northern margin of the Dunhuang block. In the Late Carboniferous to Permian the eastern end (promontory) of the Tarim Craton probably collided with the Chinese eastern Tien Shan arc, forming a new active continental margin, which interacted with the Beishan Late Paleozoic archipelago, generating a complicated subduction-accretionary orogen; this is suggested to be one of the last phases in the development of the long-lived Altaid accretionary orogenesis. The new model for this orogen bridges the gap between the western and eastern ends of the southern Altaids. The modern Timor-Australia collision zone with its many surrounding arcs is an appropriate analog for the Altaids in the Late Paleozoic.


Geological Magazine | 2012

The Liuyuan complex in the Beishan, NW China: a Carboniferous–Permian ophiolitic fore-arc sliver in the southern Altaids

Qigui Mao; Wenjiao Xiao; Brian F. Windley; Chunming Han; Junfeng Qu; Songjian Ao; Ji'en Zhang; Qianqian Guo

The tectonic history and time of closure of the Palaeo-Asian ocean of the Altaids are issues of lively current debate. To address these issues, this paper presents detailed geological, petrological and geochemical data of the Liuyuan complex (LC) in the Beishan region in NW China, located in the southernmost Altaids, in order to constrain its age, origin and tectonic setting. The LC mainly comprises massive basalts, pillow basalts, basaltic breccias, gabbros and ultramafic rocks together with cherts and tuffs. Most prominent are gabbros and large volumes of basaltic lavas. These mafic rocks have high TiO 2 contents, flat rare earth element (REE) patterns and show high-field-strength elements (HFSEs) similar to those of mid-ocean ridge basalts (MORB). The mafic rocks exhibit positive e Nd(t) (6.6–9.0) values, representing magmas derived from the mantle. But these basic rocks are also enriched in Th relative to REEs, and are systematically depleted in Nb–Ta–(Ti) relative to REEs. There is also a large range in initial 87 Sr/ 86 Sr (0.7037–0.7093). All these variables indicate that mantle-derived magma was contaminated by fluids and/or melts from a subducting lithospheric slab, and formed in a supra-subduction zone (SSZ) setting. A gabbro intruded in the complex was dated by LA-ICP-MS on 20 zircons that yielded a 206 Pb– 238 U weighted average age of 286 ± 2 Ma. Considering the fact that all these basalts are imbricated against Permian tuffaceous sediments and limestone, we propose that the LC formed as an ophiolite in a fore-arc in Carboniferous–Permian time. This indicates that the Palaeo-Asian ocean still existed at 286 ± 2 Ma in early Permian time, and thus the time of closure of the Palaeo-Asian ocean was in or after the late Permian.


Geological Magazine | 2012

Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids

Songjian Ao; Wenjiao Xiao; Chunming Han; Xian-Hua Li; Junfeng Qu; Ji'en Zhang; Qianqian Guo; Zhonghua Tian

The mechanism of continental growth of the Altaids is currently under debate between models invoking continuous subduction-accretion or punctuated accretion by closure of multiple ocean basins. We use the Yueyashan-Xichangjing ophiolite belt of the Beishan collage (southern Altaids) to constrain the earliest oceanic crust in the southern Palaeo-Asian Ocean. Five lithotectonic units were identified from S to N: the Huaniushan block, a sedimentary passive margin, the structurally incoherent Yueyashan-Xichangjing ophiolite complex, a coherent sedimentary package and the Mazongshan island arc with granitic rocks. We present a structural analysis of the accretionary complex, which is composed of the incoherent ophiolitic melange and coherent sedimentary rocks, to work out the tectonic polarity. A new weighted mean 206 Pb- 238 U age of 533 ± 1.7 Ma from a plagiogranite in the Yueyashan-Xichangjing ophiolite indicates that the ocean floor formed in early Cambrian time. Furthermore, we present new geochemical data to constrain the tectonic setting of the Yueyashan- Xichangjing ophiolite. The Yueyashan-Xichangjing ophiolite was emplaced as a result of northward subduction of an oceanic plate beneath the Mazongshan island arc to the north in late Ordovician to early Silurian time. Together with data from the literature, our work demonstrates that multiple overlapping periods of accretion existed in the Palaeozoic in the northern and southern Altaids. Therefore, a model of multiple accretion by closure of several ocean basins is most viable.


International Geology Review | 2015

Late Devonian–early Permian accretionary orogenesis along the North Tianshan in the southern Central Asian Orogenic Belt

Chao Li; Wenjiao Xiao; Chunming Han; Kefa Zhou; Ji'en Zhang; Zhixin Zhang

The Palaeozoic orogenic process in the North Tianshan of the southern Central Asian Orogenic Belt is controversial. Systematic field study indicates that the ophiolitic fragments of the North Tianshan are mainly thrust slices and blocks of a late Palaeozoic accretionary complex, which was intruded by granitoids. U-Pb zircon dating of plagiogranites from the North Tianshan ophiolite yielded a mean age of 343.1 ± 2.7 Ma. These are typical oceanic plagiogranites but with a supra-subduction zone (SSZ) signature. Ophiolitic basalts display N-MORB, E-MORB, and OIB compositions. One gabbro with an age of 301.9 ± 2.2 Ma shows E-MORB geochemistry mixed with N-MORB and OIB. Some andesites show clear island arc characters indicated by enrichment of LILEs relative to HFSEs. Mean ages of 344.9 ± 4.2 and 298.7 ± 2.4 Ma were obtained for a granite porphyry and a mylonitic granite, respectively. The two granitoids display an island arc geochemical signature evidenced by enrichment of LILEs and depletion of HFSEs. Combined with an eastward migration of Late Devonian to Carboniferous arc magmatism and related Cu-Au-Mo deposits, we propose that trench retreat and slab roll-back took place during subduction of the Junggar Ocean spreading ridge beneath the North Tianshan arc, and that the accretion may have lasted into early Permian time, an important late stage of the long-lived accretionary orogenesis in the southern Central Asian Orogenic Belt.


American Journal of Science | 2014

Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids

Lina Lin; Wenjiao Xiao; Bo Wan; Brian F. Windley; Songjian Ao; Chunming Han; Jianyun Feng; Ji'en Zhang; Zhiyong Zhang

The Langshan area in Inner Mongolia is situated in the southern Altaids between the Beishan suture to the west and the Solonker suture to the east. This paper addresses the poorly known tectonic evolution that led to formation of the terminal Solonker suture. Dating of deformed porphyries and undeformed dolerites and gabbros constrains the timing of the relevant NE-E-striking and north-vergent deformation. Deformed granitic-granodioritic porphyries in this area are characterized by high SiO2 (65.38-78.00%), low TFe2O3 (1.29-5.07%), MgO (0.13-0.63%), and variable K2O (0.53-4.14%) and Na2O (2.05-4.62%). All samples have enriched LREE (La/Yb 6-18) and negative Nb anomalies (NbN/ThN0.09-0.48), but different Eu anomalies (Eu* <0.7 or ∼1); these geochemical features can be ascribed to a heterogeneous source in a subduction-related environment. Gabbros and dolerites have 42.33 to 52.03 percent SiO2. All mafic samples have similar La/Yb ratios of 4 to 6 and negative Nb anomalies (NbN/ThN) ratios of 0.2 to 0.8, suggestive of a subduction-related setting. Two granitic porphyries yielded 238U/206Pb weighted mean ages of 284.7 ± 2.1 Ma with MSWD of 1.6 and 291.7 ± 2.1 Ma with MSWD of 1.14; these ages are consistent with 235U/207Pb and 238U/206Pb concordia ages of 281 ± 17 Ma with MSWD of 0.87 and 289.8 ± 9.2 Ma with MSWD of 0.66. A dolerite yielded concordia ages of 256.2 ± 2.6 Ma with MSWD of 0.44 and 256 ± 2.5 Ma with MSWD 0.45. The ages and geochemistry of the deformed porphyries indicate that in the early Permian there was important deformation and recrystallization in a subduction-related setting. The isotopic and geochemical signatures of all the rocks indicate that they formed during subduction-related conditions. We propose that Langshan was a Permian active continental margin arc built on the edge of the North China Craton by southward subduction, which led to closure of the ocean, concomitant formation of the Solonker suture in the late Permian-early Triassic, and termination of the accretion-subduction orogen of the southern Altaids.


Nature Communications | 2015

Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent

Bo Wan; Brian F. Windley; Wenjiao Xiao; Jianyun Feng; Ji'en Zhang

The connection between the North China Craton (NCC) and contiguous cratons is important for the configuration of the Nuna supercontinent. Here we document a new Paleoproterozoic high-pressure (HP) complex dominated by garnet websterite on the northern margin of the NCC. The peak metamorphism of the garnet websterite was after ∼1.90 Ga when it was subducted to eclogite facies at ∼2.4 GPa, then exhumed back to granulite facies at ∼0.9 GPa before ∼1.82 Ga. The rock associations with their structural relationships and geochemical affinities are comparable to those of supra-subduction zone ophiolites, and supported by subduction-related signatures of gabbros and basalts. We propose that a ∼1.90 Ga oceanic fragment was subducted and exhumed into an accretionary complex along the northern margin of the NCC. Presence of the coeval Sharyzhalgai complex with comparable HP garnet websterites in the southern Siberian active margin favours juxtaposition against the NCC in the Paleoproterozoic.


Geology of Ore Deposits | 2014

Late Paleozoic metallogenesis and evolution of the East Tianshan Orogenic Belt (NW China, Central Asia Orogenic Belt)

Chunming Han; Wenjiao Xiao; Guochun Zhao; Ben-Xun Su; Patrick Asamoah Sakyi; Songjian Ao; Bo Wan; Ji'en Zhang; Zhiyong Zhang

One of the most largest known and important metallogenic provinces in China is East Tianshan, where seven major types of Late Paleozoic metal deposits have been recognized: (1) porphyry-type Cu-Mo-(Au) ore deposits, (2) volcanic Fe-Cu deposits, (3) orogenic lode gold deposits, (4) magmatic Cu-Ni sulfide deposits, (5) epithermal gold deposits, (6) volcanic hydrothermal Cu deposits, and (7) skarn Cu-Ag deposits. Tectonically, the development of these Late Paleozoic metal mineral deposits was closely associated with the subduction and closure of the ancient Tianshan ocean intervening between the Tarim craton and the Junggar-Kazakhstan block. In the Late Devonian to Early Carboniferous, the northern margin of the Tarim craton existed as a passive-type continental margin, whereas the ancient Tianshan ocean was subducted beneath the southern margin of the Junggar-Kazakhstan block, resulting in the formation of the Dananhu-Tousuquan magmatic arc and associated porphyry-type Cu-Mo-(Au) deposits. In the Middle Carboniferous, the ancient Tianshan ocean began to subduct beneath the northern margin of the Tarim craton, leading to the formation of the Aqishan-Yamansu magmatic arc and associated volcanic Fe-Cu deposits. In the Late Carboniferous, the ancient Tianshan ocean was closed, and a continent-arc collision occurred, leading to the formation of the Tianshan orogen. Following the collision was an extensional event, which was associated with the emplacement of large amounts of ultramafic-mafic complexes and the formation of a number of large- to medium-scale magmatic copper-nickel ore deposits along the Kangger suture zone. In the Early Permian, East Tianshan entered into a post-collision stage, associated with the widespread emplacement of granitoid bodies and eruption of within-plate volcanism, which led to the formation of volcanic hydrothermal copper deposits, skarn-type Cu-Ag deposits, post-orogenic gold deposits, and epithermal gold deposits in East Tianshan.


Science China-earth Sciences | 2017

Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision

Wenjiao Xiao; Songjian Ao; Lei Yang; Chunming Han; Bo Wan; Ji'en Zhang; Zhiyong Zhang; Rui Li; Zhenyu Chen; Shuaihua Song

The pattern and timing of collision between India and Eurasia have long been a major concern of the international community. However, no consensus has been reached hitherto. To explore and resolve the disagreements in the Himalayan study, in this paper we begin with the methodology and basic principles for the anatomy of composition and nature of convergent margins, then followed by an effort to conduct a similar anatomy for the India-Eurasia collision. One of the most common patterns of plate convergence involves a passive continental margin, an active continental margin and intra-oceanic basins together with accreted terranes in between. The ultimate configuration and location of the terminal suture zone are controlled by the basal surface of the accretionary wedge, which may show fairly complex morphology with Z-shape and fluctuant geometry. One plausible method to determine the terminal suture zone is to dissect the compositions and structures of active continental margins. It requires a focus on various tectonic elements belonging to the upper plate, such as accretionary wedges, high-pressure (HP)-ultra-high-pressure (UHP) metamorphic rocks, Barrovian-type metamorphic rocks and basement nappes, together with superimposed forearc basins. Such geological records can define the extreme limits and the intervening surface separating active margin from the passive one, thus offering a general sketch for the surface trace of the terminal suture zone often with a cryptic feature. Furthermore, the occurrence of the cryptic suture zone in depth may be constrained by geophysical data, which, in combination with outcrop studies of HP-UHP metamorphic rocks, enables us to outline the terminal suture zone. The southern part of the Himalayan orogen records complicated temporal and spatial features, which are hard to be fully explained by the classic “two-plate-one-ocean” template, therefore re-anatomy of the compositions and nature for this region is necessitated. Taking advantage of the methodology and basic principles of plate convergence anatomy and synthesizing previous studies together with our recent research, we may gain new insights into the evolution of the Himalayan orogeny. (1) The Yarlung-Zangbo ophiolite is composed of multiple tectonic units rather than a single terminal suture zone, and a group of different tectonic units were juxtaposed against each other in the backstop of the Gangdese forearc. (2) The Tethyan Himalayan Sequence (THS) contains mélanges with typical block-in-matrix structures, uniform southwards paleocurrents and age spectra of detrital zircons typical of Eurasia continent. All of these facts indicate that the THS belonged to Eurasia plate before the terminal collision, emplaced in the forearc of the Gangdese arc. (3) The Greater Himalayan Crystalline Complex (GHC) and Lesser Himalayan Sequence (LHS) comprise complex components including eclogites emplaced into the GHC and the upper part of the LHS. Judging from the fact that HP-UHP metamorphic rocks are exhumed and emplaced in the upper plate, the GHC and the upper part of the LHS where eclogite occur should be assigned to the upper plate, lying above the terminal subduction zone surface. It is the very surface along which the continuous subduction of the India subcontinent occurred, therefore acting as the terminal, cryptic suture. From the suture further southward, the bulk rock associations of the LHS and Sub-Himalayan Sequence (Siwalik) show little affinity of mélange, probably belonging to the foreland system of the India plate. By the anatomy of tectonic features of all the tectonic units in the Himalayan orogen as well as the ages of the subduction-accretion related deformation, we conclude that the terminal India-Eurasia collision occurred after 14 Ma, the timing of the metamorphism of the eclogites emplaced into the upper plate. The development of rifts stretching in N-S direction in Tibet and tectonic events with the transition from sinistral to dextral movements in shear zones, such as the Ailaoshan fault in East Tibet, can coordinately reflect the scale and geodynamic influence of the India-Eurasia convergence zone. By conducting a detailed anatomy of the southern Himalayas, we propose a new model for the final collision-accretion of the Himalayan orogeny. Our study indicates that the anatomy of structures, composition, and tectonic nature is the key to a better understanding of orogenic belts, which may apply to all the orogenic belts around the world. We also point out that several important issues regarding the detailed anatomy of the structures, compositions and tectonic nature of the Himalayan orogeny in future.


International Geology Review | 2016

Structures and detrital zircon ages of the Devonian–Permian Tarbagatay accretionary complex in west Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB

Yichao Chen; Wenjiao Xiao; Brian F. Windley; Ji'en Zhang; Kefa Zhou; Miao Sang

ABSTRACT The Tarbagatay Complex, located in northwest Junggar, is situated tectonically between the Zharma–Saur arc to the north and the Tacheng terrane and the Boshchekol–Chingiz arc to the south. This Complex belt is variably composed of ophiolitic mélange, sedimentary mélange, and coherent units of turbidites and shallow water sediments. These rocks crop out in fault-bound slices with fault-parallel asymmetric folds. Both the lithologies and deformation features of the Tarbagatay Complex suggest an accretionary origin generally with a top-to-the-south tectonic vergence, suggesting N-dipping subduction beneath the Zharma–Saur arc. The presence of a former ocean is indicated by the Ordovician ophiolite mélanges and related marine fossils. The time duration of the Tarbagatay Complex can be bracketed by detrital zircon ages of turbidites and shallow water sediments with a lower limit of major peak ages of 350–370 Ma, and an upper limit of middle Permian indicated by detrital zircon ages of 262.3 Ma. Based on these data, we suggest that the subduction of the Tarbagatay Ocean likely started in the Late Devonian and lasted until the middle Permian. Taking into account the formation of the northern part of the Kazakhstan orocline, which has a similar temporal-spatial framework, we propose a tectonic model for the western CAOB that involves accretion and amalgamation from the Ordovician to the middle Permian.


International Journal of Earth Sciences | 2017

Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan–Tianshan orogenic collages (NW China)

Zhonghua Tian; Wenjiao Xiao; Brian F. Windley; Ji'en Zhang; Zhiyong Zhang; Dongfang Song

The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

Collaboration


Dive into the Ji'en Zhang's collaboration.

Top Co-Authors

Avatar

Wenjiao Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunming Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Songjian Ao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiyong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dongfang Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ben-Xun Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guochun Zhao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Zhongmei Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge