Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji Hee Ha is active.

Publication


Featured researches published by Ji Hee Ha.


Oncogene | 2005

Mitogenic signaling by lysophosphatidic acid (LPA) involves Gα12

V. Radhika; Ji Hee Ha; Muralidharan Jayaraman; Siu Tai Tsim; N. Dhanasekaran

Lysophosphatidic acid (LPA), a major G protein coupled receptor (GPCR)-activating ligand present in serum, elicits growth factor like responses by stimulating specific GPCRs coupled to heterotrimeric G proteins such as Gi, Gq, and G12/13. Previous studies have shown that the overexpression of wild-type Gα12 (Gα12WT) results in the oncogenic transformation of NIH3T3 cells (Gα12WT-NIH3T3) in a serum-dependent manner. Based on the potent growth-stimulating activity of LPA and the presence of LPA and LPA-like molecules in the serum, we hypothesized that the serum-dependent neoplastic transformation of Gα12WT-NIH3T3 cells was mediated by the stimulation of LPA-receptors (LPARs) by LPA in the serum. In the present study, using guanine nucleotide exchange assay and GST-TPR binding assay, we show that the treatment of Gα12WT-NIH3T3 with 2 μM LPA leads to the activation of Gα12. Stimulation of these cells with LPA promotes JNK-activation, a critical component of Gα12-response and cell proliferation. We also show that LPA can substitute for serum in stimulating JNK-activity, DNA synthesis, and proliferation of Gα12WT-NIH3T3 cells. LPA-mediated proliferative response in NIH3T3 cells involves Gα12, but not the closely related Gα13. Pretreatment of Gα12WT-NIH3T3 cells with suramin (100 μM), a receptor-uncoupling agent, inhibited LPA-stimulated proliferation of these cells by 55% demonstrating the signal coupling between cell surface LPAR and Gα12 in the neoplastic proliferation of NIH3T3 cells. As LPA and LPAR mediated mitogenic pathways have been shown to play a major role in tumor genesis and progression, a mechanistic understanding of the signal coupling between LPAR, Gα12, and the downstream effectors is likely to unravel additional targets for novel cancer chemotherapies.


Genes & Cancer | 2010

A Non–ATP-Competitive Dual Inhibitor of JAK2V617F and BCR-ABLT315I Kinases Elucidation of a Novel Therapeutic Spectrum Based on Substrate Competitive Inhibition

Shashidhar S. Jatiani; Stephen C. Cosenza; M.V. Ramana Reddy; Ji Hee Ha; Stacey J. Baker; Ajoy K. Samanta; Matthew J. Olnes; Loretta Pfannes; Elaine M. Sloand; Ralph B. Arlinghaus; E. Premkumar Reddy

Here we report the discovery of ON044580, an α-benzoyl styryl benzyl sulfide that possesses potent inhibitory activity against two unrelated kinases, JAK2 and BCR-ABL, and exhibits cytotoxicity to human tumor cells derived from chronic myelogenous leukemia (CML) and myelodysplasia (MDS) patients or cells harboring a mutant JAK2 kinase. This novel spectrum of activity is explained by the non-ATP-competitive inhibition of JAK2 and BCR-ABL kinases. ON044580 inhibits mutant JAK2 kinase and the proliferation of JAK2(V617F)-positive leukemic cells and blocks the IL-3-mediated phosphorylation of JAK2 and STAT5. Interestingly, this compound also directly inhibits the kinase activity of both wild-type and imatinib-resistant (T315I) forms of the BCR-ABL kinase. Finally, ON044580 effectively induces apoptosis of imatinib-resistant CML patient cells. The apparently unrelated JAK2 and BCR-ABL kinases share a common substrate, STAT5, and such substrate competitive inhibitors represent an alternative therapeutic strategy for development of new inhibitors. The novel mechanism of kinase inhibition exhibited by ON044580 renders it effective against mutant forms of kinases such as the BCR-ABL(T315I) and JAK2(V617F). Importantly, ON044580 selectively reduces the number of aneuploid cells in primary bone marrow samples from monosomy 7 MDS patients, suggesting another regulatory cascade amenable to this agent in these aberrant cells. Data presented suggest that this compound could have multiple therapeutic applications including monosomy 7 MDS, imatinib-resistant CML, and myeloproliferative neoplasms that develop resistance to ATP-competitive agents.


Genes & Cancer | 2011

Lysophosphatidic Acid Stimulates the Proliferation of Ovarian Cancer Cells via the gep Proto-Oncogene Gα 12

Zachariah G. Goldsmith; Ji Hee Ha; Muralidharan Jayaraman; Danny N. Dhanasekaran

Lysophosphatidic acid (LPA), an agonist that activates specific G protein-coupled receptors, is present at an elevated concentration in the serum and ascitic fluid of ovarian cancer patients. Although the increased levels of LPA have been linked to the genesis and progression of different cancers including ovarian carcinomas, the specific signaling conduit utilized by LPA in promoting different aspects of oncogenic growth has not been identified. Here, we show that LPA stimulates both migration and proliferation of ovarian cancer cells. Using multiple approaches, we demonstrate that the stimulation of ovarian cancer cells with LPA results in a robust and statistically significant proliferative response. Our results also indicate that Gα(12), the gep proto-oncogene, which can be stimulated by LPA via specific LPA receptors, is overtly activated in a large array of ovarian cancer cells. We further establish that LPA stimulates the rapid activation of Gα(12) in SKOV-3 cells and the expression of CT12, an inhibitory minigene of Gα(12) that disrupts LPAR-Gα(12) interaction and potently inhibits such activation. Using this inhibitory molecule as well as the shRNA approach, we show that the inhibition of Gα(12) or silencing of its expression drastically and significantly attenuates LPA-mediated proliferation of ovarian cancer cell lines such as SKOV3, Hey, and OVCAR-3. Together with our findings that the silencing of Gα(12) does not have any significant effect on LPA-mediated migratory response of SKOV3 cells, our results point to a critical role for LPA-LPAR-Gα(12) signaling in ovarian cancer cell proliferation and not in migration. Thus, results presented here for the first time demonstrate that the gep proto-oncogene forms a specific node in LPA-LPAR-mediated mitogenic signaling in ovarian cancer cells.


Molecular and Cellular Biology | 2006

Transactivation of platelet-derived growth factor receptor α by the GTPase-deficient activated mutant of Gα12

Rashmi N. Kumar; Ji Hee Ha; Rangasudhagar Radhakrishnan; Danny N. Dhanasekaran

ABSTRACT The GTPase-deficient, activated mutant of Gα12 (Gα12Q229L, or Gα12QL) induces neoplastic growth and oncogenic transformation of NIH 3T3 cells. Using microarray analysis, we have previously identified a role for platelet-derived growth factor receptor α (PDGFRα) in Gα12-mediated cell growth (R. N. Kumar et al., Cell Biochem. Biophys. 41:63-73, 2004). In the present study, we report that Gα12QL stimulates the functional expression of PDGFRα and demonstrate that the expression of PDGFRα by Gα12QL is dependent on the small GTPase Rho. Our results indicate that it is cell type independent as the transient expression of Gα12QL or the activation of Gα12-coupled receptors stimulates the expression of PDGFRα in NIH 3T3 as well as in human astrocytoma 1321N1 cells. Furthermore, we demonstrate the presence of an autocrine loop involving PDGF-A and PDGFRα in Gα12QL-transformed cells. Analysis of the functional consequences of the Gα12-PDGFRα signaling axis indicates that Gα12 stimulates the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway through PDGFR. In addition, we show that Gα12QL stimulates the phosphorylation of forkhead transcription factor FKHRL1 via AKT in a PDGFRα- and PI3K-dependent manner. Since AKT promotes cell growth by blocking the transcription of antiproliferative genes through the inhibitory phosphorylation of forkhead transcription factors, our results describe for the first time a PDGFRα-dependent signaling pathway involving PI3K-AKT-FKHRL1, regulated by Gα12QL in promoting cell growth. Consistent with this view, we demonstrate that the expression of a dominant negative mutant of PDGFRα attenuated Gα12-mediated neoplastic transformation of NIH 3T3 cells.


Cancer Letters | 2015

LPA-mediated migration of ovarian cancer cells involves translocalization of Gαi2 to invadopodia and association with Src and β-pix

Jeremy D. Ward; Ji Hee Ha; Muralidharan Jayaraman; Danny N. Dhanasekaran

Lysophosphatidic acid (LPA) plays a critical role in the migration and invasion of ovarian cancer cells. However, the downstream spatiotemporal signaling events involving specific G protein(s) underlying this process are largely unknown. In this report, we demonstrate that LPA signaling causes the translocation of Gαi2 into the invadopodia leading to its interaction with the tyrosine kinase Src and the Rac/CDC42-specific guanine nucleotide exchange factor, β-pix. Our results establish that Gαi2 activates Rac1 through a p130Cas-dependent pathway in ovarian cancer cells. Moreover, our report reveals that knockdown of Gαi2 leads to loss of β-pix and active-Rac association in the invadopodia. We also show that knockdown of Gαi2 leads to the complete loss of translocation to p130Cas to focal adhesions. Finally, when Gαi2 is knocked down, this led to the total distribution of Src being shifted primarily from invadopodia and the leading edge of the cells to the perinuclear region, suggesting that Src is inactive in the absence of Gαi2. Overall, our report provides tantalizing evidence that Gαi2 is a critical signaling component of a large signaling complex in the invadopodia that if disrupted could serve as an excellent target for therapy in ovarian and potentially other cancers.


Pancreas | 2013

The gep proto-oncogene Gα13 Mediates Lysophosphatidic acid-mediated Migration of Pancreatic Cancer Cells

Jacob Gardner; Ji Hee Ha; Muralidharan Jayaraman; Danny N. Dhanasekaran

Objectives Tumor microenvironment, defined by a variety of growth factors including lysophosphatidic acid (LPA), whose levels are increased in pancreatic cancer patients, plays a major role in the genesis and progression of pancreatic cancer. Because the gep proto-oncogenes, G&agr;12 and G&agr;13, are implicated in LPA-stimulated oncogenic signaling, this study is focused on evaluating the role of these proto-oncogenes in LPA-stimulated invasive migration of pancreatic cancer cells. Methods Effect of LPA on the migration and proliferation of pancreatic cancer cells was assessed using BxPC3, Dan-G, MDAPanc-28, Panc-1, and PaCa-2 cell lines. The role of G&agr;13 in the migration of pancreatic cancer cells was interrogated by disrupting lysophosphatidic acid receptor-G&agr;13 interaction using CT13, a dominant negative mutant of G&agr;13, and by silencing the expression of G&agr;13. Results Results indicate that LPA stimulates the migration of pancreatic cancer cells and such LPA-stimulated migratory response is mediated by G&agr;13. Furthermore, the results establish that the silencing of G&agr;13, but not G&agr;12, abrogates LPA-stimulated invasive migration of pancreatic cancer cells. Conclusions These results report for the first time a critical role for G&agr;13 in LPA-stimulated invasive migration of pancreatic cancer cells. These findings identify LPA-lysophosphatidic acid receptor-G&agr;13 signaling node as a novel therapeutic target for pancreatic cancer treatment and control.


Oncotarget | 2016

Lysophosphatidic acid stimulates epithelial to mesenchymal transition marker Slug/Snail2 in ovarian cancer cells via Gαi2, Src, and HIF1α signaling nexus

Ji Hee Ha; Jeremy D. Ward; Rangasudhagar Radhakrishnan; Muralidharan Jayaraman; Yong Sang Song; Danny N. Dhanasekaran

Recent studies have identified a critical role for lysophosphatidic acid (LPA) in the progression of ovarian cancer. Using a transcription factor activation reporter array, which analyzes 45 distinct transcription factors, it has been observed that LPA observed robustly activates the transcription factor hypoxia-induced factor-1α (HIF1α) in SKOV3.ip ovarian cancer cells. HIF1α showed 150-fold increase in its activation profile compared to the untreated control. Validation of the array analysis indicated that LPA stimulates a rapid increase in the levels of HIF1α in ovarian cancer cells, with an observed maximum level of HIF1α-induction by 4 hours. Our report demonstrates that LPA stimulates the increase in HIF1α levels via Gαi2. Consistent with the role of HIF1α in epithelial to mesenchymal transition (EMT) of cancer cells, LPA stimulates EMT and associated invasive cell migration along with an increase in the expression levels N-cadherin and Slug/Snail2. Using the expression of Slug/Snail2 as a marker for EMT, we demonstrate that the inhibition of Gαi2, HIF1α or Src attenuates this response. In line with the established role of EMT in promoting invasive cell migration, our data demonstrates that the inhibition of HIF1α with the clinically used HIF1α inhibitor, PX-478, drastically attenuates LPA-stimulates invasive migration of SKOV3.ip cells. Thus, our present study demonstrates that LPA utilizes a Gαi2-mediated signaling pathway via Src kinase to stimulate an increase in HIF1α levels and downstream EMT-specific factors such as Slug, leading to invasive migration of ovarian cancer cells.


Genes & Cancer | 2010

Mitogenic Signaling by the gep Oncogene Involves the Upregulation of S-Phase Kinase-Associated Protein 2

Rangasudhagar Radhakrishnan; Ji Hee Ha; Danny N. Dhanasekaran

The gep oncogene, defined by the activated mutant of the α-subunit of the G protein G(12) (Gα(12)Q229L or Gα(12)QL), potently stimulates the proliferation of many different cell types in addition to inducing neoplastic transformation of several fibroblast cell lines. While it has been demonstrated that Gα(12)QL accelerates G1- to S-phase cell cycle progression, the precise mechanism through which Gα(12) communicates to cell cycle machinery is largely unknown. In the present study, we report that the activated-mutational as well as receptor-mediated-Gα(12) transmits its proliferative signals to cell cycle machinery by modulating the levels of the S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, involved in the regulation of the cyclin-dependent kinase inhibitor (CKI), p27(Kip1). Our results show that the expression of Gα(12)QL leads to an increase in the levels of Skp2 with a correlatable decrease in p27(Kip1) levels and subsequent increase in the activities of specific CDKs. By demonstrating that the transient expression of Gα(12)QL induces an increase in Skp2 levels with resultant downregulation of p27(Kip1) in both NIH3T3 and human astrocytoma 1321N1 cells, we establish here that the effect of Gα(12) on Skp2/p27(Kip1) is cell type independent. In addition, we demonstrate that LPA-stimulated proliferation and changes in Skp2 and p27(Kip1) levels in 1321N1 cells could be inhibited by the expression of a dominant-negative mutant of Gα(12), thereby pointing to the critical role of Gα(12) in LPA-mediated mitogenic signaling. Our findings also indicate that LPA as well as Gα(12)-mediated upregulation of Skp2 requires a yet to be characterized mechanism involving JNK. Since Skp2 has been identified as an oncogene, and it is overexpressed in many cancers, our results presented here describe for the first time that Skp2 is a novel target in the cell cycle machinery through which Gα(12) and its cognate receptors transmit their oncogenic signals.


Oncotarget | 2016

Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer

Ji Hee Ha; Mingda Yan; Rohini Gomathinayagam; Muralidharan Jayaraman; Sanam Husain; Jinsong Liu; Priyabrata Mukherjee; E. Premkumar Reddy; Yong Sang Song; Danny N. Dhanasekaran

Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy.


Journal of Molecular Signaling | 2015

Gα13 stimulates the tyrosine phosphorylation of Ric-8A

Mingda Yan; Ji Hee Ha; Danny N. Dhanasekaran

The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane.

Collaboration


Dive into the Ji Hee Ha's collaboration.

Top Co-Authors

Avatar

Danny N. Dhanasekaran

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy D. Ward

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Rangasudhagar Radhakrishnan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Mingda Yan

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Sang Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Priyabrata Mukherjee

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge