Ji-Ho Park
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji-Ho Park.
Cancer Research | 2009
Geoffrey von Maltzahn; Ji-Ho Park; Amit Agrawal; Nanda Kishor Bandaru; Sarit K. Das; Michael J. Sailor; Sangeeta N. Bhatia
Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t(1/2), approximately 17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as approximately 2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ji-Ho Park; Geoffrey von Maltzahn; Mary Jue Xu; Valentina Fogal; Venkata Ramana Kotamraju; Erkki Ruoslahti; Sangeeta N. Bhatia; Michael J. Sailor
A significant barrier to the clinical translation of systemically administered therapeutic nanoparticles is their tendency to be removed from circulation by the mononuclear phagocyte system. The addition of a targeting ligand that selectively interacts with cancer cells can improve the therapeutic efficacy of nanomaterials, although these systems have met with only limited success. Here, we present a cooperative nanosystem consisting of two discrete nanomaterials. The first component is gold nanorod (NR) “activators” that populate the porous tumor vessels and act as photothermal antennas to specify tumor heating via remote near-infrared laser irradiation. We find that local tumor heating accelerates the recruitment of the second component: a targeted nanoparticle consisting of either magnetic nanoworms (NW) or doxorubicin-loaded liposomes (LP). The targeting species employed in this work is a cyclic nine-amino acid peptide LyP-1 (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) that binds to the stress-related protein, p32, which we find to be upregulated on the surface of tumor-associated cells upon thermal treatment. Mice containing xenografted MDA-MB-435 tumors that are treated with the combined NR/LyP-1LP therapeutic system display significant reductions in tumor volume compared with individual nanoparticles or untargeted cooperative system.
Bioconjugate Chemistry | 2008
Geoffrey von Maltzahn; Yin Ren; Ji-Ho Park; Dal-Hee Min; Venkata Ramana Kotamraju; Jayanthi Jayakumar; Valentina Fogal; Michael J. Sailor; Erkki Ruoslahti; Sangeeta N. Bhatia
The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or click reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of click chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that click chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, click nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5 h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of click nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development.
ACS Nano | 2008
Elizabeth C. Wu; Ji-Ho Park; Jennifer S. Park; Ester Segal; Frédérique Cunin; Michael J. Sailor
The fluorescent dye Alexa Fluor 488 or the anticancer drug doxorubicin is attached to the surface and inner pore walls of mesoporous Si particles by covalent attachment, and the oxidation-induced release of each molecule is studied. The molecules are bound to the Si matrix using a 10-undecenoic acid linker, which is attached by thermal hydrosilylation. Loading capacity of the microparticles using this method is approximately 0.5 and 45 mg/g of porous Si microparticle for Alexa Fluor 488 and doxorubicin, respectively. The Si-C-bound assembly is initially stable in aqueous solution, although oxidation of the underlying Si matrix results in conversion to silicon oxide and slow release of the linker-molecule complex by hydrolysis of the Si-O attachment points. When the attached molecule is a fluorophore (Alexa Fluor 488 or doxorubicin), its fluorescence is effectively quenched by the semiconducting silicon matrix. As the particle oxidizes in water, the fluorescence intensity of the attached dye increases due to growth of the insulating silicon oxide layer and, ultimately, dye release from the surface. The recovery of fluorescence in the microparticle and the release of the molecule into solution are monitored in real-time by fluorescence microscopy. Both processes are accelerated by introduction of the oxidizing species peroxynitrite to the aqueous solution. The oxidation-triggered release of the anticancer drug doxorubicin to HeLa cells is demonstrated.
Blood | 2010
Lilach Agemy; Kazuki N. Sugahara; Venkata Ramana Kotamraju; Kunal Gujraty; Olivier M. Girard; Yuko Kono; Robert F. Mattrey; Ji-Ho Park; Michael J. Sailor; Ana I. Jiménez; Carlos Cativiela; David Zanuy; Francisco J. Sayago; Carlos Alemán; Ruth Nussinov; Erkki Ruoslahti
The tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) specifically homes to tumors by binding to fibrin and fibrin-associated clotted plasma proteins in tumor vessels. Previous results show that CREKA-coated superparamagnetic iron oxide particles can cause additional clotting in tumor vessels, which creates more binding sites for the peptide. We have used this self-amplifying homing system to develop theranostic nanoparticles that simultaneously serve as an imaging agent and inhibit tumor growth by obstructing tumor circulation through blood clotting. The CREKA nanoparticles were combined with nanoparticles coated with another tumor-homing peptide, CRKDKC, and nanoparticles with an elongated shape (nanoworms) were used for improved binding efficacy. The efficacy of the CREKA peptide was then increased by replacing some residues with nonproteinogenic counterparts, which increased the stability of the peptide in the circulation. Treatment of mice bearing orthotopic human prostate cancer tumors with the targeted nanoworms caused extensive clotting in tumor vessels, whereas no clotting was observed in the vessels of normal tissues. Optical and magnetic resonance imaging confirmed tumor-specific targeting of the nanoworms, and ultrasound imaging showed reduced blood flow in tumor vessels. Treatment of mice with prostate cancer with multiple doses of the nanoworms induced tumor necrosis and a highly significant reduction in tumor growth.
ACS Nano | 2012
Luo Gu; Ronnie H. Fang; Michael J. Sailor; Ji-Ho Park
Thermal decomposition of organometallic precursors has been found to generate highly crystalline iron oxide (IO) nanocrystals that display superior MR contrast and lower polydispersity than IO nanocrystals synthesized by aqueous precipitation. In the present study, the in vivo characteristics of IO nanocrystals prepared by the thermal decomposition route and then coated with a phospholipid containing a pendant poly(ethylene glycol) chain are examined. The size and surface chemistry of the IO nanocrystal influence the biodistibution, the rate of biodegradation and bioclearance, and the biodegradation products. We conclude that the in vivo fate of PEGylated monodisperse IO nanocrystals and the iron, phospholipid, and oleic acid biodegradation products may influence the cellular environments in the organs and blood that can determine their safety in the body.
Nano Letters | 2015
Junsung Lee; Ji-Young Kim; Moonkyoung Jeong; Hyoungjin Lee; Unbyeol Goh; Hyaeyeong Kim; Byungji Kim; Ji-Ho Park
Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.
Journal of Controlled Release | 2014
Ji Young Kim; Olavo Amorim Santos; Ji-Ho Park
Subcellular localization of photosensitizers (PSs) determines the therapeutic efficacy in the photodynamic therapy. However, among the subcellular compartments, there has been little effort to deliver the PSs selectively into the plasma membrane and examine the phototherapeutic efficacy of membrane-localized PSs. Here, we developed a liposomal delivery system to localize the hydrophobic PSs selectively into the plasma membrane. The membrane fusogenic liposomes (MFLs), the membrane of which is engineered to fuse with the plasma membrane, was prepared for the membrane localization of PSs. The phototherapeutic efficacy of cells treated with ZnPc-loaded MFLs was superior over that of cells treated with ZnPc-loaded non-fusogenic liposomes, which is the conventional liposomal formulation that delivers the PSs into the intracellular compartments via endocytosis. The membrane localization of ZnPc molecules led to rapid membrane disruption upon irradiation and subsequent necrosis-like cell death. The membrane-localized generation of reactive oxygen species in the cells treated with ZnPc-loaded MFLs was likely to account for the effective disruption of plasma membrane. Thus, this work provides a novel delivery method to localize the PSs selectively into the plasma membrane with the enhanced phototherapeutic efficacy.
Journal of Controlled Release | 2015
Ye-Jin Kim; Jeomil Bae; Tae-Hwan Shin; Se Hun Kang; Moonkyoung Jeong; Yunho Han; Ji-Ho Park; Seok-Ki Kim; Yong-Sung Kim
Neuropilin-1 (NRP1) receptor, involved in vascular endothelial growth factor (VEGF)-mediated vascular permeability and tumor angiogenesis, is targeted by peptides that bind to its VEGF-binding site. However, these peptides also cross-react with the structurally related receptor, NRP2. Here, we describe an immunoglobulin Fc-fused peptide, Fc-TPP11, which specifically binds to the VEGF-binding site of NRP1 with approximately 2nM affinity, but negligibly to that of NRP2. Fc-TPP11 triggered NRP1-dependent signaling, enhanced vascular permeability via vascular endothelial (VE)-cadherin downregulation, and increased paracellular permeability via E-cadherin downregulation in tumor tissues. Fc-TPP11 also significantly enhanced the tumor penetration of co-injected anti-cancer drug, doxorubicin, leading to the improved in vivo anti-tumor efficacy. Fc-TPP11 was easily adapted to the full-length anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) cetuximab (Erbitux), cetuximab-TPP11, exhibiting more than 2-fold improved tumor penetration than the parent cetuximab. Fc-TPP11 exhibited a similar whole-body half-life to that of intact Fc in tumor bearing mice. In addition to the tumor-penetrating activity, Fc-TPP11 suppressed VEGF-dependent angiogenesis by blocking VEGF binding to NRP1, thereby inhibiting tumor growth without promoting metastasis in the mouse model. Our results show that NRP1-specific, high-affinity binding of Fc-TPP11, is useful to validate NRP1 signaling, independent of NRP2. Thus, Fc-TPP11 can be used as a tumor penetration-promoting agent with anti-angiogenic activity or directly adapted to mAb-TPP11 format for more potent anti-cancer antibody therapy.
Journal of Controlled Release | 2015
Lianhua Chi; Moon-Hee Na; Hyun-Kyung Jung; Sri Murugan Poongkavithai Vadevoo; Cheong-Wun Kim; Guruprasath Padmanaban; Tae-In Park; Jae Yong Park; Ilseon Hwang; Keon Uk Park; Frank Liang; Maggie Lu; Ji-Ho Park; In-San Kim; Byung-Heon Lee
A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor. IL4RPep-1 preferentially bound to H226 lung tumor cells which express higher levers of IL-4R compared to H460 lung tumor cells which express less IL-4R. Mutational analysis revealed that C1, R2, and R4 residues of IL4RPep-1 were the key binding determinants. IL4RPep-1-labeled liposomes containing doxorubicin were more efficiently internalized in H226 cells and effectively delivered doxorubicin into the cells compared to unlabeled liposomes. In vivo fluorescence imaging of nude mice subcutaneously xenotransplanted with H226 tumor cells indicated that IL4RPep-1-labeled liposomes accumulate more efficiently in the tumor and inhibit tumor growth more effectively compared to unlabeled liposomes. Interestingly, expression of IL-4R was high in vascular endothelial cells of tumor, while little was detected in vascular endothelial cells of control organs including the liver. IL-4R expression in cultured human vascular endothelial cells was also up-regulated when activated by a pro-inflammatory cytokine tumor necrosis factor-α. Moreover, the up-regulation of IL-4R expression was observed in primary human lung cancer tissues. These results indicate that IL-4R-targeting nanocarriers may be a useful strategy to enhance drug delivery through the recognition of IL-4R in both tumor cells and tumor endothelial cells.