Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Joon Song is active.

Publication


Featured researches published by Ji-Joon Song.


Genes & Development | 2008

Structural basis of histone H4 recognition by p55

Ji-Joon Song; Joseph D. Garlick; Robert E. Kingston

p55 is a common component of many chromatin-modifying complexes and has been shown to bind to histones. Here, we present a crystal structure of Drosophila p55 bound to a histone H4 peptide. p55, a predicted WD40 repeat protein, recognizes the first helix of histone H4 via a binding pocket located on the side of a beta-propeller structure. The pocket cannot accommodate the histone fold of H4, which must be altered to allow p55 binding. Reconstitution experiments show that the binding pocket is important to the function of p55-containing complexes. These data demonstrate that WD40 repeat proteins use various surfaces to direct the modification of histones.


Journal of Biological Chemistry | 2008

WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket.

Ji-Joon Song; Robert E. Kingston

WDR5 is a component of the mixed lineage leukemia (MLL) complex, which methylates lysine 4 of histone H3, and was identified as a methylated Lys-4 histone H3-binding protein. Here, we present a crystal structure of WDR5 bound to an MLL peptide. Surprisingly, we find that WDR5 utilizes the same pocket shown to bind histone H3 for this MLL interaction. Furthermore, the WDR5-MLL interaction is disrupted preferentially by mono- and di-methylated Lys-4 histone H3 over unmodified and tri-methylated Lys-4 histone H3. These data implicate a delicate interplay between the effector, WDR5, the catalytic subunit, MLL, and the substrate, histone H3, of the MLL complex. We suggest that the activity of the MLL complex might be regulated through this interplay.


Journal of Biological Chemistry | 2011

Crystal Structure of the Human Histone Methyltransferase ASH1L Catalytic Domain and Its Implications for the Regulatory Mechanism

Sojin An; Kwon Joo Yeo; Young Ho Jeon; Ji-Joon Song

Absent, small, or homeotic disc1 (Ash1) is a trithorax group histone methyltransferase that is involved in gene activation. Although there are many known histone methyltransferases, their regulatory mechanisms are poorly understood. Here, we present the crystal structure of the human ASH1L catalytic domain, showing its substrate binding pocket blocked by a loop from the post-SET domain. In this configuration, the loop limits substrate access to the active site. Mutagenesis of the loop stimulates ASH1L histone methyltransferase activity, suggesting that ASH1L activity may be regulated through the loop from the post-SET domain. In addition, we show that human ASH1L specifically methylates histone H3 Lys-36. Our data implicate that there may be a regulatory mechanism of ASH1L histone methyltransferases.


Developmental Cell | 2012

Control of Seed Germination by Light-Induced Histone Arginine Demethylation Activity

Jung-Nam Cho; Jee-Youn Ryu; Young-Min Jeong; Jihye Park; Ji-Joon Song; Richard M. Amasino; Bosl Noh; Yoo-Sun Noh

For optimal survival, various environmental and endogenous factors should be monitored to determine the appropriate timing for seed germination. Light is a major environmental factor affecting seed germination, which is perceived by phytochromes. The light-dependent activation of phytochrome B (PHYB) modulates abscisic acid and gibberellic acid signaling and metabolism. Thus far, several negative regulators of seed germination that act when PHYB is inactive have been reported. However, neither positive regulators of seed germination downstream of PHYB nor a direct mechanism for regulation of the hormone levels has been elucidated. Here, we show that the histone arginine demethylases, JMJ20 and JMJ22, act redundantly as positive regulators of seed germination. When PHYB is inactive, JMJ20/JMJ22 are directly repressed by the zinc-finger protein SOMNUS. However, upon PHYB activation, JMJ20/JMJ22 are derepressed, resulting in increased gibberellic acid levels through the removal of repressive histone arginine methylations at GA3ox1/GA3ox2, which in turn promotes seed germination.


Molecular Cell | 2015

Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs

Myung Hyun Jo; Soochul Shin; Seung-Ryoung Jung; Eunji Kim; Ji-Joon Song; Sungchul Hohng

Argonaute is a key enzyme of various RNA silencing pathways. We use single-molecule fluorescence measurements to characterize the reaction mechanisms of the core-RISC (RNA-induced silencing complex) composed of human Argonaute 2 and a small RNA. We found that target binding of core-RISC starts at the seed region, resulting in four distinct reaction pathways: target cleavage, transient binding, stable binding, and Argonaute unloading. The target cleavage requires extensive sequence complementarity and dramatically accelerates core-RISC recycling. The stable binding of core-RISC is efficiently established with the seed match only, providing a potential explanation for the seed-match rule of miRNA (microRNA) target selection. Target cleavage on perfect-match targets sensitively depends on RNA sequences, providing an insight into designing more efficient siRNAs (small interfering RNAs).


World Journal of Gastroenterology | 2014

Epigenetics: An emerging player in gastric cancer

Changwon Kang; Ji-Joon Song; Jaeok Lee; Mi-Young Kim

Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer.


Applied and Environmental Microbiology | 2013

Improved Production of L-Threonine in Escherichia coli by Use of a DNA Scaffold System

Jun Hyoung Lee; Suk-Chae Jung; Le Minh Bui; Kui Hyeon Kang; Ji-Joon Song; Sun Chang Kim

ABSTRACT Despite numerous approaches for the development of l-threonine-producing strains, strain development is still hampered by the intrinsic inefficiency of metabolic reactions caused by simple diffusion and random collisions of enzymes and metabolites. A scaffold system, which can promote the proximity of metabolic enzymes and increase the local concentration of intermediates, was reported to be one of the most promising solutions. Here, we report an improvement in l-threonine production in Escherichia coli using a DNA scaffold system, in which a zinc finger protein serves as an adapter for the site-specific binding of each enzyme involved in l-threonine production to a precisely ordered location on a DNA double helix to increase the proximity of enzymes and the local concentration of metabolites to maximize production. The optimized DNA scaffold system for l-threonine production significantly increased the efficiency of the threonine biosynthetic pathway in E. coli, substantially reducing the production time for l-threonine (by over 50%). In addition, this DNA scaffold system enhanced the growth rate of the host strain by reducing the intracellular concentration of toxic intermediates, such as homoserine. Our DNA scaffold system can be used as a platform technology for the construction and optimization of artificial metabolic pathways as well as for the production of many useful biomaterials.


Genes & Development | 2015

AUF1 promotes let-7b loading on Argonaute 2

Je-Hyun Yoon; Myung Hyun Jo; Elizabeth J.F. White; Supriyo De; Markus Hafner; Beth E. Zucconi; Kotb Abdelmohsen; Jennifer L. Martindale; Xiaoling Yang; William H. Wood; Yu Mi Shin; Ji-Joon Song; Thomas Tuschl; Kevin G. Becker; Gerald M. Wilson; Sungchul Hohng; Myriam Gorospe

Eukaryotic gene expression is tightly regulated post-transcriptionally by RNA-binding proteins (RBPs) and microRNAs. The RBP AU-rich-binding factor 1 (AUF1) isoform p37 was found to have high affinity for the microRNA let-7b in vitro (Kd = ∼ 6 nM) in cells. Ribonucleoprotein immunoprecipitation, in vitro association, and single-molecule-binding analyses revealed that AUF1 promoted let-7b loading onto Argonaute 2 (AGO2), the catalytic component of the RNA-induced silencing complex (RISC). In turn, AGO2-let-7 triggered target mRNA decay. Our findings uncover a novel mechanism by which AUF1 binding and transfer of microRNA let-7 to AGO2 facilitates let-7-elicited gene silencing.


Genes & Development | 2013

Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua

Eunji Kim; Husiang-Chih Lu; Huda Y. Zoghbi; Ji-Joon Song

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by polyglutamine expansion in Ataxin-1 (ATXN1). ATXN1 binds to the transcriptional repressor Capicua (CIC), and the interaction plays a critical role in SCA1 pathogenesis whereby reducing CIC levels rescues SCA1-like phenotypes in a mouse model. The ATXN1/HBP1 (AXH) domain of ATXN1 mediates its homodimerization as well as the interaction with CIC. Here, we present the crystal structure of ATXN1s AXH domain bound to CIC and show that the binding pocket of the AXH domain to CIC overlaps with the homodimerization pocket of the AXH domain. Thus, the binding to CIC disrupts the homodimerization of ATXN1. Furthermore, the binding of CIC reconfigures the complex to allow another form of dimerization mediated by CIC, showing the intricacy of protein complex formation and reconfiguration by ATXN1 and CIC. Identifying the surfaces mediating the interactions between CIC and ATXN1 reveals a critical role for CIC in the reconfiguration of the AXH dimers and might provide insight into ways to target the ATXN1/CIC interactions to modulate SCA1 pathogenesis.


Journal of Virology | 2013

A Viral Histone H4 Joins to Eukaryotic Nucleosomes and Alters Host Gene Expression

Rahul Hepat; Ji-Joon Song; Dae-Weon Lee; Yonggyun Kim

ABSTRACT A viral histone H4 (CpBV-H4) is encoded in a polydnavirus, Cotesia plutellae bracovirus. Its predicted amino acid sequence is highly homologous to that of host insect histone H4 except for an extended N-terminal tail containing 38 amino acids with nine lysine residues. Its expression induces an immunosuppression of target insects by suppressing immune-associated genes, presumably through an epigenetic control. This study analyzed its molecular interaction with eukaryotic host nucleosomes and subsequent regulation of host gene expression. Purified recombinant CpBV-H4 could associate with nucleosomal components (H2A, H2B, H3, and H4) and form an octamer. Transient expression of CpBV-H4 in an insect, Tribolium castaneum, was performed by microinjection of a recombinant expression vector and confirmed by both reverse transcriptase PCR (RT-PCR) and immunoblotting assays. Under this transient expression condition, total RNAs were extracted and read by a deep-sequencing technique. Annotated transcripts were classified into different gene ontology (GO) categories and compared with those of control insects injected with a truncated CpBV-H4. Target genes manipulated by CpBV-H4 expression showing significant differences (fold changes > 109) included all GO categories, including development and immune-associated genes. When the target genes were physically mapped, they were found to be scattered on entire chromosomes of T. castaneum. In addition, chromatin immunoprecipitation against CpBV-H4 determined 16 nucleosome sites (P < 10−5) of the viral histone incorporation, which were noncoding regions near DNA-binding and inducible genes. These findings suggest that the viral histone H4 alters host gene expression by a direct molecular interaction with insect nucleosomes.

Collaboration


Dive into the Ji-Joon Song's collaboration.

Top Co-Authors

Avatar

Eunji Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Sungchul Hohng

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hans Hebert

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soochul Shin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge