Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Min Cao is active.

Publication


Featured researches published by Ji-Min Cao.


Trends in Endocrinology and Metabolism | 2006

Effects of ghrelin and synthetic GH secretagogues on the cardiovascular system

Ji-Min Cao; Huy Ong; Chen Chen

Ghrelin, a newly discovered endogenous hormone that is produced by the stomach, and synthetic peptides have been identified recently as potent growth-hormone secretagogues. This effect is exerted through interaction with a specific G-protein-coupled receptor, GHS-R1a, which is expressed mainly in the hypothalamus-pituitary complex. A study of the peripheral distribution of GHS receptors has shown that it is also present in cardiovascular tissue, which has led to the exploration of the cardiovascular functions of ghrelin and synthetic, growth-hormone-releasing peptides. These ligands have several cardiovascular activities, including a cardioprotective effect against myocardial ischemia, and vasoactive and cardiotropic effects in both experimental models and humans. These effects are mediated by the interaction of these ligands with binding sites, including GHS-1Ra, for which the signalling pathways are not documented fully. Identification of the cardiac and vascular binding sites for ghrelin and synthetic, growth-hormone-releasing peptides will provide new perspectives for treating cardiovascular diseases with these ligands.


Science China-life Sciences | 2011

The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell.

Jingli Gu; Haifei Xu; Yehua Han; Wei Dai; Wei Hao; ChunYu Wang; Ning Gu; Haiyan Xu; Ji-Min Cao

The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attracted intense interest based on the cell-nano interaction. However, the mechanisms underlying cell uptake, the intracellular trail, final fate and the biological effects of SPIONs have not yet been clearly elucidated. Here, we showed that multiple endocytic pathways were involved in the internalization process of SPIONs in the RAW264.7 macrophage. The internalized SPIONs were biocompatible and used three different metabolic pathways: The SPIONs were distributed to daughter cells during mitosis; they were degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; and, the intact SPIONs were potentially exocytosed out of the cells. The internalized SPIONs did not induce cell damage but affected iron metabolism, inducing the upregulation of ferritin light chain at both the mRNA and protein levels and ferroportin 1 at the mRNA level. These results may contribute to the development of nanobiology and to the safe use of SPIONs in medicine when administered as a contrast medium or a drug delivery tool.


Peptides | 2010

Hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in the rat

Jinjiang Pang; Qihua Xu; Xiangbin Xu; Hongchao Yin; Rong-Kun Xu; Shu Guo; Wei Hao; Luya Wang; Chen Chen; Ji-Min Cao

Growth hormone-releasing peptides (GHRP) and ghrelin are synthetic and natural ligands of growth hormone secretagogue receptor (GHSR) respectively and are shown to exert protective actions on cardiac dysfunction. Because ghrelin has been reported to inhibit proinflammatory responses in human endothelium and GHSR has been identified in blood vessels, we hypothesized that GHRP could alleviate the development of atherosclerosis (As). Atherosclearosis was induced by a short period (4 days) of vitamin D(3) and chronic (three months) intragastric feeding of high fat emulsion (containing 0.5% propylthiouracil) in adult SD rats. Some As rats received chronic hexarelin (a variant of GHRP) injection (SC BID, 30 days) and normal rats received placebo as control. Significant atherosclerosis developed in animals fed with the emulsion. Serum total cholesterol and LDL-c increased, and HDL-c and aortic nitric oxide (NO) decreased significantly in As group. Hexarelin suppressed the formation of atherosclerotic plaques and neointima, partially reversed serum HDL-c/LDL-c ratio and increased the levels of serum NO and aortic mRNAs of eNOS, GHSR and CD36 in As rats. Hexarelin also decreased [(3)H]-TdR incorporation in cultured vascular smooth muscle cell (VSMC) and calcium sedimentation in aortic wall. Furthermore, foam cell formation induced by ox-LDL was decreased by hexarelin. In conclusion, hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in rats, possibly through upregulating HDL-c/LDL-c ratio, vascular NO production and downregulating the VSMC proliferation, aortic calcium sedimentation and foam cell formation. These novel anti-atherosclerotic actions of hexarelin suggest that the peptide might have a clinical potential in treating atherosclerosis.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat

Xiangbin Xu; Fan Ding; Jinjiang Pang; Xue Gao; Rong-Kun Xu; Wei Hao; Ji-Min Cao; Chen Chen

Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis.


World Journal of Gastroenterology | 2012

Gastric mucosal damage in water immersion stress: Mechanism and prevention with GHRP-6

Shu Guo; Qian Gao; Qing Jiao; Wei Hao; Xue Gao; Ji-Min Cao

AIM To investigate the mechanism of gastric mucosal demage induced by water immersion restraint stress (WRS) and its prevention by growth hormone releasing peptide-6 (GHRP-6). METHODS Male Wistar rats were subjected to conscious or unconscious (anesthetized) WRS, simple restraint (SR), free swimming (FS), non-water fluid immersion, immersion without water contact, or rats were placed in a cage surrounded by sand. To explore the sensitivity structures that influence the stress reaction besides skin stimuli, a group the rats had their eyes occluded. Cervical bilateral trunk vagotomy or atropine injection was performed in some rats to assess the parasympathetic role in mucosal damage. Gastric mucosal lesions, acid output and heart rate variability were measured. Plasma renin, endothelin-1 and thromboxane B2 and gastric heat shock protein 70 were also assayed. GHRP-6 was injected [intraperitoneal (IP) or intracerebroventricular (ICV)] 2 h before the onset of stress to observe its potential prevention of the mucosal lesion. RESULTS WRS for 6 h induced serious gastric mucosal lesion [lesion area, WRS 81.8 ± 6.4 mm² vs normal control 0.0 ± 0.0 mm², P < 0.01], decreased the heart rate, and increased the heart rate variability and gastric acid secretion, suggesting an increase in vagal nerve-carrying stimuli. The mucosal injury was inversely correlated with water temperature (lesion area, WRS at 35 °C 56.4 ± 5.2 mm² vs WRS at 23 °C 81.8 ± 6.4 mm², P < 0.01) and was consciousness-dependent. The injury could not be prevented by eye occlusion, but could be prevented by avoiding contact of the rat body with the water by dressing it in an impermeable plastic suit. When water was replaced by vegetable oil or liquid paraffin, there were gastric lesions in the same grade of water immersion. When rat were placed in a cage surrounded by sand, there were no gastric lesions. All these data point to a remarkable importance of cutenuous information transmitted to the high neural center that by vagal nerves reaching the gastric mucosa. FS alone also induced serious gastric injury, but SR could not induce gastric injury. Bilateral vagotomy or atropine prevented the WRS-induced mucosal lesion, indicating that increased outflow from the vagal center is a decisive factor in WRS-induced gastric injury. The mucosal lesions were prevented by prior injection of GHRP-6 via IP did, but not via ICV, suggesting that the protection is peripheral, although a sudden injection is not equivalent to a physiological release and uptake, which eventually may affect the vagal center. CONCLUSION From the central nervous system, vagal nerves carry the cutaneous stimuli brought about by the immersion restraint, an experimental model for inducing acute gastric erosions. GHRP-6 prevents the occurrence of these lesions.


Scientific Reports | 2016

A novel role of microRNA 17-5p in the modulation of circadian rhythm

Qian Gao; Lan Zhou; Su-Yu Yang; Ji-Min Cao

The circadian clock helps living organisms to adjust their physiology and behaviour to adapt environmental day-night cycles. The period length of circadian rhythm reflects the endogenous cycle transition rate and is modulated by environmental cues or internal molecules, and the latter are of substantial importance but remain poorly revealed. Here, we demonstrated that microRNA 17-5p (miR-17-5p), which has been associated with tumours, was an important factor in controlling the circadian period. MiR-17-5p was rhythmically expressed in synchronised fibroblasts and mouse master clock suprachiasmatic nuclei (SCN). MiR-17-5p and the gene Clock exhibited a reciprocal regulation: miR-17-5p inhibited the translation of Clock by targeting the 3′UTR (untranslated region) of Clock mRNA, whereas the CLOCK protein directly bound to the promoter of miR-17 and enhanced its transcription and production of miR-17-5p. In addition, miR-17-5p suppressed the expression of Npas2. At the cellular level, bidirectional changes in miR-17-5p or CLOCK resulted in CRY1 elevation. Accordingly, in vivo, both increase and decrease of miR-17-5p in the mouse SCN led to an increase in CRY1 level and shortening of the free-running period. We conclude that miR-17-5p has an important role in the inspection and stabilisation of the circadian-clock period by interacting with Clock and Npas2 and potentially via the output of CRY1.


Science China-life Sciences | 2013

Zacopride selectively activates the Kir2.1 channel via a PKA signaling pathway in rat cardiomyocytes

Li Zhang; Qing-Hua Liu; ChengFang Liu; Xu-Wen Zhai; Qi-Long Feng; RuiLing Xu; Cui Xl; ZhiQing Zhao; Ji-Min Cao; Bo-Wei Wu

We recently reported that zacopride is a selective inward rectifier potassium current (IK1) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study IK1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at −50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT)3 receptor was undetectable, whereas 5-HT4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor.


Nanotoxicology | 2017

The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice

Cai-Xia Lin; Su-Yu Yang; Jingli Gu; Jie Meng; Haiyan Xu; Ji-Min Cao

Abstract This study focused on the potential toxicity of silver nanoparticles (AgNPs) on cardiac electrophysiology which is rarely investigated. We found that AgNPs (10−9–10−6 g/ml) concentration-dependently depolarized the resting potential, diminished the action potential, and finally led to loss of excitability in mice cardiac papillary muscle cells in vitro. In cultured neonatal mice cardiomyocytes, AgNPs (10−9–10−7 g/ml) concentration-dependently decreased the Na+ currents (INa), accelerated the activation, and delayed the inactivation and recovery of Na+ channels from inactivation within 5 min. AgNPs at 10−8 g/ml also rapidly decreased the inwardly rectifying K+ currents (IK1) and delayed the activation of IK1 channels. Intravenous injection of AgNPs at 3 mg/kg only decreased the heart rate, while at ≥4 mg/kg sequentially induced sinus bradycardia, complete atrio-ventricular conduction block, and cardiac asystole. AgNPs at 10−10–10−6 g/ml did not increase reactive oxygen species (ROS) generation and only at 10−6 g/ml mildly induced lactate dehydrogenase (LDH) release in the cardiomyocytes within 5 min. Endocytosis of AgNPs by cardiomyocytes was not observed within 5 min, but was observed 1 h after exposing to AgNPs. Comparative Ag+ (≤0.02% of the AgNPs) could not induce above toxicities. We conclude that AgNPs exert rapid toxic effects on myocardial electrophysiology and induce lethal bradyarrhythmias. These acute toxicities are likely due to direct effects of AgNPs on ion channels at the nano-scale level, but not caused by Ag+, ROS, and membrane injury. These findings provide warning to the nanomedical practice using AgNPs.


Scientific Reports | 2016

Degeneration and energy shortage in the suprachiasmatic nucleus underlies the circadian rhythm disturbance in ApoE −/− mice: implications for Alzheimer’s disease

Lan Zhou; Qian Gao; Meng Nie; Jingli Gu; Wei Hao; Lin Wang; Ji-Min Cao

Alzheimer’s disease (AD) patients suffer sleep disorders and circadian rhythm disturbances (CRDs). The underlying mechanisms are incompletely understood, and treatments are lacking. In this study, we characterized the locomotor activity, clock gene expression, morphological degeneration and energy metabolism of suprachiasmatic nucleus (SCN), together with retinal light sensing, in ApoE−/− mice, a model for AD. Compared with the control C57BL/6J mice, ApoE−/− mice exhibited disordered circadian locomotor activity under dim light and constant darkness, with impaired re-entrainment to phase change schedules. Decreased retinal melanopsin expression, together with amyloidosis and tau deposition, was evident in ApoE−/− mice. Mitochondrial and synaptic deterioration, altered SIRT1-mediated energy metabolism and clock gene expression were also observed in ApoE−/− SCN. Supplementation with fat or ketone bodies but not glucose, or intraperitoneal administration of nicotinamide, restored the locomotor rhythmicity and circadian expression of SIRT1 and clock genes, as well as reducing neurodegeneration. Taken together, ApoE deficiency induced degeneration and a significant disturbance in the SCN rhythmicity. Decline of retinal light sensing and SCN structural and metabolic deteriorations represented the major pathologies accounting for the CRDs in ApoE−/− mice. Our curative experiments may help develop future therapies to treat the CRDs and sleep disorders in AD patients.


Nanotechnology | 2015

Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells

Li Yan; Xiao Liu; Weixia Liu; Xiao-Qiu Tan; Fei Xiong; Ning Gu; Wei Hao; Xue Gao; Ji-Min Cao

Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron oxide nanoparticles may exert modulatory effects on T cell immune activities and anti-inflammation effects.

Collaboration


Dive into the Ji-Min Cao's collaboration.

Top Co-Authors

Avatar

Wei Hao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangbin Xu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Chen Chen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Li Yan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiao-Qiu Tan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong-Kun Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xue Gao

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge