Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Ming Gong is active.

Publication


Featured researches published by Ji-Ming Gong.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis

Ji-Ming Gong; David Lee; Julian I. Schroeder

Phytochelatin synthases (PCS) mediate cellular heavy-metal resistance in plants, fungi, and worms. However, phytochelatins (PCs) are generally considered to function as intracellular heavy-metal detoxification mechanisms, and whether long-distance transport of PCs occurs during heavy-metal detoxification remains unknown. Here, wheat TaPCS1 cDNA expression was either targeted to Arabidopsis roots with the Arabidopsis alcohol dehydrogenase (Adh) promoter (Adh::TaPCS1/cad1-3) or ectopically expressed with the cauliflower mosaic virus 35S promoter (35S::TaPCS1/cad1-3) in the PC-deficient mutant cad1-3. Adh::TaPCS1/cad1-3 and 35S::TaPCS1/cad1-3 complemented the cadmium, mercury, and arsenic sensitivities of the cad1-3 mutant. Northern blot, RT-PCR, and Western blot analyses showed Adh promoter-driven TaPCS1 expression only in roots and thus demonstrated lack of long-distance TaPCS1 mRNA and protein transport in plants. Fluorescence HPLC analyses showed that under Cd2+ stress, no PCs were detectable in cad1-3. However, in Adh::TaPCS1/cad1-3 plants, PCs were detected in roots and in rosette leaves and stems. Inductively coupled plasma atomic emission spectrometer analyses showed that either root-specific or ectopic expression of TaPCS1 significantly enhanced long-distance Cd2+ transport into stems and rosette leaves. Unexpectedly, transgenic expression of TaPCS1 reduced Cd2+ accumulation in roots compared with cad1-3. The reduced Cd2+ accumulation in roots and enhanced root-to-shoot Cd2+ transport in transgenic plants were abrogated by l-buthionine sulfoximine. The presented findings show that (i) transgenic expression of TaPCS1 suppresses the heavy-metal sensitivity of cad1-3, (ii) PCs can be transported from roots to shoots, and (iii) transgenic expression of the TaPCS1 gene increases long-distance root-to-shoot Cd2+ transport and reduces Cd2+ accumulation in roots.


The Plant Cell | 2010

The Arabidopsis Nitrate Transporter NRT1.8 Functions in Nitrate Removal from the Xylem Sap and Mediates Cadmium Tolerance

Jian-Yong Li; Yan-Lei Fu; Sharon Pike; Juan Bao; Wang Tian; Yu Zhang; Chun-Zhu Chen; Yi Zhang; Hongmei Li; Jing Huang; Li L; Julian I. Schroeder; Walter Gassmann; Ji-Ming Gong

Environmental stresses affect the nitrate distribution between roots and shoots, and transporters that remove nitrate from the xylem sap are essential for long-distance nitrate transport. This study shows that the nitrate transporter NRT1.8 is induced by cadmium and removes nitrate from xylem vessels and furthermore establishes a correlation between nitrate allocation and cadmium tolerance. Long-distance transport of nitrate requires xylem loading and unloading, a successive process that determines nitrate distribution and subsequent assimilation efficiency. Here, we report the functional characterization of NRT1.8, a member of the nitrate transporter (NRT1) family in Arabidopsis thaliana. NRT1.8 is upregulated by nitrate. Histochemical analysis using promoter-β-glucuronidase fusions, as well as in situ hybridization, showed that NRT1.8 is expressed predominantly in xylem parenchyma cells within the vasculature. Transient expression of the NRT1.8:enhanced green fluorescent protein fusion in onion epidermal cells and Arabidopsis protoplasts indicated that NRT1.8 is plasma membrane localized. Electrophysiological and nitrate uptake analyses using Xenopus laevis oocytes showed that NRT1.8 mediates low-affinity nitrate uptake. Functional disruption of NRT1.8 significantly increased the nitrate concentration in xylem sap. These data together suggest that NRT1.8 functions to remove nitrate from xylem vessels. Interestingly, NRT1.8 was the only nitrate assimilatory pathway gene that was strongly upregulated by cadmium (Cd2+) stress in roots, and the nrt1.8-1 mutant showed a nitrate-dependent Cd2+-sensitive phenotype. Further analyses showed that Cd2+ stress increases the proportion of nitrate allocated to wild-type roots compared with the nrt1.8-1 mutant. These data suggest that NRT1.8-regulated nitrate distribution plays an important role in Cd2+ tolerance.


Plant Journal | 2012

Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice.

Yu Zhang; Yong-Han Xu; Hong-Yin Yi; Ji-Ming Gong

The plant vacuole is an important organelle for storing excess iron (Fe), though its contribution to increasing the Fe content in staple foods remains largely unexplored. In this study we report the isolation and functional characterization of two rice genes OsVIT1 and OsVIT2, orthologs of the Arabidopsis VIT1. Transient expression of OsVIT1:EGFP and OsVIT2:EGFP protein fusions revealed that OsVIT1 and OsVIT2 are localized to the vacuolar membrane. Ectopic expression of OsVIT1 and OsVIT2 partially rescued the Fe(2+) - and Zn(2+) -sensitive phenotypes in yeast mutant Δccc1 and Δzrc1, and further increased vacuolar Fe(2+) , Zn(2+) and Mn(2+) accumulation. These data together suggest that OsVIT1 and OsVIT2 function to transport Fe(2+) , Zn(2+) and Mn(2+) across the tonoplast into vacuoles in yeast. In rice, OsVIT1 and OsVIT2 are highly expressed in flag leaf blade and sheath, respectively, and in contrast to OsVIT1, OsVIT2 is highly responsive to Fe treatments. Interestingly, functional disruption of OsVIT1 and OsVIT2 leads to increased Fe/Zn accumulation in rice seeds and a corresponding decrease in the source organ flag leaves, indicating an enhanced Fe/Zn translocation between source and sink organs, which might represent a novel strategy to biofortify Fe/Zn in staple foods.


Plant Physiology | 2012

Arabidopsis NRT1.5 Is Another Essential Component in the Regulation of Nitrate Reallocation and Stress Tolerance

Chun-Zhu Chen; Xin-Fang Lv; Jian-Yong Li; Hong-Ying Yi; Ji-Ming Gong

Nitrate reallocation to plant roots occurs frequently under adverse conditions and was recently characterized to be actively regulated by Nitrate Transporter1.8 (NRT1.8) in Arabidopsis (Arabidopsis thaliana) and implicated as a common response to stresses. However, the underlying mechanisms remain largely to be determined. In this study, characterization of NRT1.5, a xylem nitrate-loading transporter, showed that the mRNA level of NRT1.5 is down-regulated by salt, drought, and cadmium treatments. Functional disruption of NRT1.5 enhanced tolerance to salt, drought, and cadmium stresses. Further analyses showed that nitrate, as well as Na+ and Cd2+ levels, were significantly increased in nrt1.5 roots. Important genes including Na+/H+ exchanger1, Salt overly sensitive1, Pyrroline-5-carboxylate synthase1, Responsive to desiccation29A, Phytochelatin synthase1, and NRT1.8 in stress response pathways are steadily up-regulated in nrt1.5 mutant plants. Interestingly, altered accumulation of metabolites, including proline and malondialdehyde, was also observed in nrt1.5 plants. These data suggest that NRT1.5 is involved in nitrate allocation to roots and the consequent tolerance to several stresses, in a mechanism probably shared with NRT1.8.


Plant Physiology | 2012

Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis

Jing Huang; Yu Zhang; Jia-Shi Peng; Chen Zhong; Hong-Ying Yi; David W. Ow; Ji-Ming Gong

Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was localized to tonoplast, and enhanced tolerance to and accumulation of Cd2+, copper, arsenic, and zinc. The action of SpHMT1 requires PC substrates, and failed to confer Cd2+ tolerance and accumulation when glutathione and PC synthesis was blocked by l-buthionine sulfoximine, or only PC synthesis is blocked in the cad1-3 mutant, which is deficient in PC synthase. SpHMT1 expression enhanced vacuolar Cd2+ accumulation in wild-type Columbia-0, but not in cad1-3, where only approximately 35% of the Cd2+ in protoplasts was localized in vacuoles, in contrast to the near 100% found in wild-type vacuoles and approximately 25% in those of cad2-1 that synthesizes very low amounts of glutathione and PCs. Interestingly, constitutive SpHMT1 expression delayed root-to-shoot metal transport, and root-targeted expression confirmed that roots can serve as a sink to reduce metal contents in shoots and seeds. These findings suggest that SpHMT1 function requires PCs in Arabidopsis, and it is feasible to promote food safety by engineering plants using SpHMT1 to decrease metal accumulation in edible tissues.


The Plant Cell | 2014

The Arabidopsis Ethylene/Jasmonic Acid-NRT Signaling Module Coordinates Nitrate Reallocation and the Trade-Off between Growth and Environmental Adaptation

Guo-Bin Zhang; Hong-Ying Yi; Ji-Ming Gong

Stress-induced nitrate allocation to roots serves as a universal mechanism in response to diverse stresses, although how it perceives the environment remains unknown. This study demonstrates that the ET/JA-NRT1.5/NRT1.8 signaling module functions in this perception to fine-tune nitrate allocation and plant adaptation to the environment. Stresses decouple nitrate assimilation and photosynthesis through stress-initiated nitrate allocation to roots (SINAR), which is mediated by the nitrate transporters NRT1.8 and NRT1.5 and functions to promote stress tolerance. However, how SINAR communicates with the environment remains unknown. Here, we present biochemical and genetic evidence demonstrating that in Arabidopsis thaliana, ethylene (ET) and jasmonic acid (JA) affect the crosstalk between SINAR and the environment. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that ethylene response factors (ERFs), including OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59, bind to the GCC boxes in the NRT1.8 promoter region, while ETHYLENE INSENSITIVE3 (EIN3) binds to the EIN3 binding site motifs in the NRT1.5 promoter. Genetic assays showed that cadmium and sodium stresses initiated ET/JA signaling, which converged at EIN3/EIN3-Like1 (EIL1) to modulate ERF expression and hence to upregulate NRT1.8. By contrast, ET and JA signaling mediated the downregulation of NRT1.5 via EIN3/EIL1 and other, unknown component(s). SINAR enhanced stress tolerance and decreased plant growth under nonstressed conditions through the ET/JA-NRT1.5/NRT1.8 signaling module. Interestingly, when nitrate reductase was impaired, SINAR failed to affect either stress tolerance or plant growth. These data suggest that SINAR responds to environmental conditions through the ET/JA-NRT signaling module, which further modulates stress tolerance and plant growth in a nitrate reductase-dependent manner.


Frontiers in Plant Science | 2014

Vacuolar sequestration capacity and long-distance metal transport in plants

Jia-Shi Peng; Ji-Ming Gong

The vacuole is a pivotal organelle functioning in storage of metabolites, mineral nutrients, and toxicants in higher plants. Accumulating evidence indicates that in addition to its storage role, the vacuole contributes essentially to long-distance transport of metals, through the modulation of Vacuolar sequestration capacity (VSC) which is shown to be primarily controlled by cytosolic metal chelators and tonoplast-localized transporters, or the interaction between them. Plants adapt to their environments by dynamic regulation of VSC for specific metals and hence targeting metals to specific tissues. Study of VSC provides not only a new angle to understand the long-distance root-to-shoot transport of minerals in plants, but also an efficient way to biofortify essential mineral nutrients or to phytoremediate non-essential metal pollution. The current review will focus on the most recent proceedings on the interaction mechanisms between VSC regulation and long-distance metal transport.


The Plant Cell | 2013

Arabidopsis Histone Methylase CAU1/PRMT5/SKB1 Acts as an Epigenetic Suppressor of the Calcium Signaling Gene CAS to Mediate Stomatal Closure in Response to Extracellular Calcium

Yan-Lei Fu; Guo-Bin Zhang; Xin-Fang Lv; Yuan Guan; Hong-Ying Yi; Ji-Ming Gong

Elevations in extracellular Ca2+ stimulate stomatal closure, though the underlying mechanisms remain elusive. This study reports the isolation and functional characterization of cau1, a novel allele of PRMT5/SKB1, using forward genetics, and reveals that CAU1/PRMT5/SKB1 synchronizes extracellular Ca2+ levels and stomatal closure via dynamic histone methylation of the CAS chromatin. Elevations in extracellular calcium ([Ca2+]o) are known to stimulate cytosolic calcium ([Ca2+]cyt) oscillations to close stomata. However, the underlying mechanisms regulating this process remain largely to be determined. Here, through the functional characterization of the calcium underaccumulation mutant cau1, we report that the epigenetic regulation of CAS, a putative Ca2+ binding protein proposed to be an external Ca2+ sensor, is involved in this process. cau1 mutant plants display increased drought tolerance and stomatal closure. A mutation in CAU1 significantly increased the expression level of the calcium signaling gene CAS, and functional disruption of CAS abolished the enhanced drought tolerance and stomatal [Ca2+]o signaling in cau1. Map-based cloning revealed that CAU1 encodes the H4R3sme2 (for histone H4 Arg 3 with symmetric dimethylation)-type histone methylase protein arginine methytransferase5/Shk1 binding protein1. Chromatin immunoprecipitation assays showed that CAU1 binds to the CAS promoter and modulates the H4R3sme2-type histone methylation of the CAS chromatin. When exposed to elevated [Ca2+]o, the protein levels of CAU1 decreased and less CAU1 bound to the CAS promoter. In addition, the methylation level of H4R3sme2 decreased in the CAS chromatin. Together, these data suggest that in response to increases in [Ca2+]o, fewer CAU1 protein molecules bind to the CAS promoter, leading to decreased H4R3sme2 methylation and consequent derepression of the expression of CAS to mediate stomatal closure and drought tolerance.


FEBS Letters | 2015

LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato.

Yan-Lei Fu; Hong-Ying Yi; Juan Bao; Ji-Ming Gong

Nitrogen plays an important role in plant growth and development. Nitrate transporters have been extensively studied in Arabidopsis, but in tomato they have not been functionally characterized. In this study, we report the functions of LeNRT2.3 in nitrate transport in tomato. Our results show that LeNRT2.3 is induced by nitrate, and mainly localizes to the plasma membranes of rhizodermal and pericycle cells in roots. Further analysis in Xenopus oocytes showed that LeNRT2.3 mediates low‐affinity nitrate transport. 35S:LeNRT2.3 increased nitrate uptake in root and transport from root to shoot. More interestingly, 35S:LeNRT2.3 showed high biomass and fruit weight. Taken together, these results suggest that LeNRT2.3 plays a double role in nitrate uptake and long‐distance transport in tomato.


Nature Communications | 2018

A defensin-like protein drives cadmium efflux and allocation in rice

Jin-Song Luo; Jing Huang; Dali Zeng; Jia-Shi Peng; Guo-Bin Zhang; Hai-Ling Ma; Yuan Guan; Hong-Ying Yi; Yan-Lei Fu; Bin Han; Hong-Xuan Lin; Qian Qian; Ji-Ming Gong

Pollution by heavy metals limits the area of land available for cultivation of food crops. A potential solution to this problem might lie in the molecular breeding of food crops for phytoremediation that accumulate toxic metals in straw while producing safe and nutritious grains. Here, we identify a rice quantitative trait locus we name cadmium (Cd) accumulation in leaf 1 (CAL1), which encodes a defensin-like protein. CAL1 is expressed preferentially in root exodermis and xylem parenchyma cells. We provide evidence that CAL1 acts by chelating Cd in the cytosol and facilitating Cd secretion to extracellular spaces, hence lowering cytosolic Cd concentration while driving long-distance Cd transport via xylem vessels. CAL1 does not appear to affect Cd accumulation in rice grains or the accumulation of other essential metals, thus providing an efficient molecular tool to breed dual-function rice varieties that produce safe grains while remediating paddy soils.Crops that allocate heavy metals to leaves rather than grains could allow phytoremediation of polluted soil while producing food that is safe to eat. Here, the authors show that a defensin-like protein promotes cadmium secretion from rice cells and allocation to leaves without causing accumulation in grain.

Collaboration


Dive into the Ji-Ming Gong's collaboration.

Top Co-Authors

Avatar

Hong-Ying Yi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia-Shi Peng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan-Lei Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guo-Bin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chun-Zhu Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hai-Ling Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Yong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuan Guan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge