Ji-Sang Park
National Renewable Energy Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji-Sang Park.
Journal of Physical Chemistry Letters | 2015
Ji-Sang Park; Sukgeun Choi; Yong Yan; Ye Yang; Joseph M. Luther; Su-Huai Wei; Philip A. Parilla; Kai Zhu
The electronic structure and related optical properties of an emerging thin-film photovoltaic material CH3NH3PbBr3 are studied. A block-shaped α-phase CH3NH3PbBr3 single crystal with the natural ⟨100⟩ surface is synthesized solvothermally. The room-temperature dielectric function ε = ε1 + iε2 spectrum of CH3NH3PbBr3 is determined by spectroscopic ellipsometry from 0.73 to 6.45 eV. Data are modeled with a series of Tauc-Lorentz oscillators, which show the absorption edge with a strong excitonic transition at ∼2.3 eV and several above-bandgap optical structures associated with the electronic interband transitions. The energy band structure and ε data of CH3NH3PbBr3 for the CH3NH3(+) molecules oriented in the ⟨111⟩ and ⟨100⟩ directions are obtained from first-principles calculations. The overall shape of ε data shows a qualitatively good agreement with experimental results. Electronic origins of major optical structures are discussed.
Nano Letters | 2010
Ji-Sang Park; Byungki Ryu; Chang-Youn Moon; Kee-Joo Chang
The origin of the ballistic hole gas recently observed in Ge/Si core-shell nanowires has not been clearly resolved yet, although it is thought to be the result of the band offset at the radial interface. Here we perform spin-polarized density-functional calculations to investigate the defect levels of surface dangling bonds and Au impurities in the Si shell. Without any doping strategy, we find that Si dangling bond and substitutional Au defects behave as charge traps, generating hole carriers in the Ge core, while their defect levels are very deep in one-component Si nanowires. The defect levels lie to within 10 meV from or below the valence band edge for nanowires with diameters larger than 33 A and the Ge fractions above 30%. As carriers are spatially separated from charge traps, scattering is greatly suppressed, leading to the ballistic conduction, in good agreement with experiments.
Advanced Materials | 2017
Dong Hoe Kim; Jaehong Park; Zhen Li; Mengjin Yang; Ji-Sang Park; Ik Jae Park; Jin Young Kim; Joseph J. Berry; Garry Rumbles; Kai Zhu
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 × 1014 cm-3 ), and unprecedented 9 GHz charge-carrier mobility (71 cm2 V-1 s-1 ), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). The TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.
Journal of Applied Physics | 2015
Ji-Hui Yang; Wan-Jian Yin; Ji-Sang Park; James M. Burst; Wyatt K. Metzger; T.A. Gessert; Teresa M. Barnes; Su-Huai Wei
One of the main limiting factors in CdTe solar cells is its low p-type dopability and, consequently, low open-circuit voltage (VOC). We have systematically studied P and As doping in CdTe with first-principles calculations in order to understand how to increase the hole density. We find that both P and As p-type doping are self-compensated by the formation of AX centers. More importantly, we find that although high-temperature growth is beneficial to obtain high hole density, rapid cooling is necessary to sustain the hole density and to lower the Fermi level close to the valence band maximum (VBM) at room temperature. Thermodynamic simulations suggest that by cooling CdTe from a high growth temperature to room temperature under Te-poor conditions and choosing an optimal dopant concentration of about 1018/cm3, P and As doping can reach a hole density above 1017/cm3 at room temperature and lower the Fermi level to within ∼0.1 eV above the VBM. These results suggest a promising pathway to improve the VOC and...
Journal of Applied Physics | 2016
Ji Hui Yang; Wan Jian Yin; Ji-Sang Park; Wyatt K. Metzger; S.-H. Wei
Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.
Journal of Materials Chemistry | 2016
Ji-Hui Yang; Wan-Jian Yin; Ji-Sang Park; Su-Huai Wei
The stability of organic–inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.
New Journal of Physics | 2015
Ji-Sang Park; Joongoo Kang; Ji-Hui Yang; Wyatt K. Metzger; Su-Huai Wei
Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ3 (111), Σ3 (112), Σ5 (120), and Σ5 (130) GBs, we show that the Σ3 (111) GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ5 (120) GBs, however, are shown to be more stable than the Σ3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Moreover, we find that although containing wrong bonds, the Σ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ3 (112) GBs also having wrong bonds but with longer bond lengths.
Nano Letters | 2012
Sunghyun Kim; Ji-Sang Park; Kee-Joo Chang
Using molecular dynamics simulations, we generate realistic atomic models for oxidized Si nanowires which consist of a crystalline Si core and an amorphous SiO(2) shell. The amorphous characteristics of SiO(2) are well reproduced, as compared to those for bulk amorphous silica. Based on first-principles density functional calculations, we investigate the stability and segregation of B and P dopants near the radial interface between Si and SiO(2). Although substitutional B atoms are more stable in the core than in the oxide, B dopants can segregate to the oxide with the aid of Si self-interstitials which are generated during thermal oxidation. The segregation of B dopants occurs in the form of B interstitials in the oxide, leaving the self-interstitials in the Si core. In the case of P dopants, dopant segregation to the oxide is unfavorable even in the presence of self-interstitials. Instead, we find that P dopants tend to aggregate in the Si region near the interface and may form nearest-neighbor donor pairs, which are energetically more stable than isolated P dopants.
Scientific Reports | 2015
Ji Hui Yang; Wan Jian Yin; Ji-Sang Park; S.-H. Wei
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.
Journal of Materials Chemistry | 2017
M. D. Sampson; Ji-Sang Park; Richard D. Schaller; Maria K. Y. Chan; Alex B. F. Martinson
Lead halide perovskites have proven to be a versatile class of visible light absorbers that allow rapid access to the long minority carrier lifetimes and diffusion lengths desirable for traditional single-junction photovoltaics. We explore the extent to which the attractive features of these semiconductors may be extended to include an intermediate density of states for future application in multi-level solar energy conversion systems capable of exceeding the Shockley–Queisser limit. We computationally and experimentally explore the substitution of transition metals on the Pb site of MAPbX3 (MA = methylammonium, X = Br or Cl) to achieve a tunable density of states within the parent gap. Computational screening identified both Fe- and Co-substituted MAPbBr3 as promising absorbers with a mid-gap density of states, and the later films were synthesized via conventional solution-based processing techniques. First-principles density functional theory (DFT) calculations support the existence of mid-gap states upon Co incorporation and enhanced sub-gap absorption, which are consistent with UV-visible-NIR absorption spectroscopy. Strikingly, steady state and time-resolved PL studies reveal no sign of self-quenching for Co-substitution up to 25%, which suggest this class of materials to be a worthy candidate for future application in intermediate band photovoltaics.