Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji Suk Chang is active.

Publication


Featured researches published by Ji Suk Chang.


Journal of Biological Chemistry | 2009

Alternative mRNA Splicing Produces a Novel Biologically Active Short Isoform of PGC-1α

Yubin Zhang; Peter Huypens; Aaron W. Adamson; Ji Suk Chang; Tara M. Henagan; Anik Boudreau; Natalie R. Lenard; David H. Burk; Johannes Klein; Nina Perwitz; Jeho Shin; Mathias Fasshauer; Anastasia Kralli; Thomas W. Gettys

The transcriptional co-activator PGC-1α regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1α (NT-PGC-1α) produced by alternative 3′ splicing that introduces an in-frame stop codon into PGC-1α mRNA. The expressed protein includes the first 267 amino acids of PGC-1α and 3 additional amino acids from the splicing insert. NT-PGC-1α contains the transactivation and nuclear receptor interaction domains but is missing key domains involved in nuclear localization, interaction with other transcription factors, and protein degradation. Expression and subcellular localization of NT-PGC-1α are dynamically regulated in the context of physiological signals that regulate full-length PGC-1α, but the truncated domain structure conveys unique properties with respect to protein-protein interactions, protein stability, and recruitment to target gene promoters. Therefore, NT-PGC-1α is a co-expressed, previously unrecognized form of PGC-1α with functions that are both unique from and complementary to PGC-1α.


Journal of Biological Chemistry | 2012

NT-PGC-1α Protein Is Sufficient to Link β3-Adrenergic Receptor Activation to Transcriptional and Physiological Components of Adaptive Thermogenesis

Ji Suk Chang; Vivian Fernand; Yubin Zhang; Jeho Shin; Hee-Jin Jun; Yagini Joshi; Thomas W. Gettys

Background: PPARGC1A produces PGC-1α and NT-PGC-1α, but alternative splicing from exon 1b generates additional PGC-1α isoforms. Results: Thermoregulatory thermogenesis is uncompromised in mice that lack PGC-1α but retain expression of slightly shorter forms of NT-PGC-1α. Conclusion: NT-PGC-1α is sufficient to link β3-AR activation to the components of adaptive thermogenesis in adipose tissue. Significance: NT-PGC-1α plays a crucial role in the physiological effects of PGC-1α. PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1−/−) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α254). At room temperature, NT-PGC-1α and NT-PGC-1α254 were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α−/− mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α−/− mice. Moreover, treatment of the two genotypes with a selective β3-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α−/− mice, and that NT-PGC-1α is sufficient to link β3-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.


Journal of Biological Chemistry | 2010

Regulation of NT-PGC-1α Subcellular Localization and Function by Protein Kinase A-dependent Modulation of Nuclear Export by CRM1

Ji Suk Chang; Peter Huypens; Yubin Zhang; Chelsea Black; Anastasia Kralli; Thomas W. Gettys

Peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1α (NT-PGC-1α, amino acids 1–270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1α is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1α is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1α interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1α is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1α, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1α is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1α as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.


Current Biology | 2003

The Actin-Regulating Kinase Prk1p Negatively Regulates Scd5p, a Suppressor of Clathrin Deficiency, in Actin Organization and Endocytosis

Kenneth R. Henry; Kathleen D'Hondt; Ji Suk Chang; David A. Nix; M. Jamie T. V. Cope; Clarence S.M. Chan; David G. Drubin; Sandra K. Lemmon

Endocytosis is a dynamic process requiring a network of interacting proteins that assemble and disassemble during cargo capture and vesicle formation. A major mechanism for regulation of this process involves the reversible phosphorylation of endocytic factors. Recently, members of a new kinase family, the Ark/Prk kinases, which include mammalian AAK1 and GAK as well as yeast Prk1p, Ark1p, and Akl1p, were shown to regulate components of the endocytic machinery. These include animal AP-1/AP-2 mu chains and yeast Pan1p (Eps15-like), Sla1p, and epsins, but other potential targets are likely. SCD5, an essential yeast gene, was identified as a suppressor of clathrin deficiency. We also showed that Scd5p is required for normal cortical actin organization and endocytosis, possibly as a targeting subunit for protein phosphatase type 1 (PP1). Scd5p contains a central triple repeat (3R) motif related to a known Prk1p consensus phosphorylation site L/IxxQxTG, except that Q is replaced by T. In this study we demonstrate that the Scd5p 3R sequence is phosphorylated by Prk1p to negatively regulate Scd5p. Furthermore, we show that Prk1p, Ark1p, and Akl1p have different substrate specificities and play distinct roles in actin organization and endocytosis.


Journal of Biological Chemistry | 2002

Protein phosphatase-1 binding to Scd5p is important for regulation of actin organization and endocytosis in yeast

Ji Suk Chang; Kenneth R. Henry; Bianka L. Wolf; Maribel Geli; Sandra K. Lemmon

SCD5, an essential gene, encodes a protein important for endocytosis and actin organization in yeast. Previous two-hybrid screens showed that Scd5p interacts with Glc7p, a yeast Ser/Thr-specific protein phosphatase-1 (PP1) that participates in a variety of cellular processes. PP1 substrate specificity in vivo is regulated by association with different regulatory or targeting subunits, many of which have a consensus PP1-binding site ((V/I)XF, with a basic residue at the −1 or −2 position). Scd5p contains two of these potential PP1-binding motifs: KVDF (amino acids 240–243) and KKVRF (amino acids 272–276). Deletion analysis mapped the PP1-binding domain to a region of Scd5p containing these motifs. Therefore, the consequence of mutating these two potential PP1-binding sites was examined. Although mutation of KVDF had no effect, alteration of KKVRF dramatically reduced Scd5p interaction with Glc7p and resulted in temperature-sensitive growth. Furthermore, this mutation caused defects in fluid phase and receptor-mediated endocytosis and actin organization. Overexpression of GLC7suppressed the temperature-sensitive growth of the KKVRF mutant and partially rescued the actin organization phenotype. These results provide evidence that Scd5p is a PP1 targeting subunit for regulation of actin organization and endocytosis or that Scd5p is a PP1 substrate, which regulates the function of Scd5p in these processes.


BioMed Research International | 2014

Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1αmRNA in Mouse Skeletal Muscle

Xingyuan Wen; Jing Wu; Ji Suk Chang; Pengcheng Zhang; Jianzhu Wang; Yaliang Zhang; Thomas W. Gettys; Yubin Zhang

PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b) and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3′ splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle during physical exercise with different intensities. We report here that NT-PGC-1α-a mRNA expression derived from a canonical exon 1 (exon 1a) is increased by high-intensity exercise and AMPK activator AICAR in mouse skeletal muscle but not altered by low- and medium-intensity exercise and β 2-adrenergic receptor agonist clenbuterol. In contrast, the alternative exon 1b-driven NT-PGC-1α-b (PGC-1α4) and NT-PGC-1α-c are highly induced by low-, medium-, and high-intensity exercise, AICAR, and clenbuterol. Ectopic expression of NT-PGC-1α-a in C2C12 myotube cells upregulates myosin heavy chain (MHC I, MHC II a) and Glut4, which represent oxidative fibers, and promotes the expression of mitochondrial genes (Cyc1, COX5B, and ATP5B). In line with gene expression data, citrate synthase activity was significantly increased by NT-PGC-1α-a in C2C12 myotube cells. Our results indicate the regulatory role for NT-PGC-1α-a in mitochondrial biogenesis and adaptation of skeletal muscle to endurance exercise.


Journal of Cell Science | 2012

Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis

Richard J. Chi; Onaidy Teresa Torres; Verónica A. Segarra; Tanya Lansley; Ji Suk Chang; Thomas M. Newpher; Sandra K. Lemmon

Summary Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1&Dgr;2, a mutation causing impaired PP1 binding. scd5-PP1&Dgr;2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1&Dgr;2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1&Dgr;2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1&Dgr;SR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1&Dgr;SR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis.


Ppar Research | 2012

Transcriptional Activity of PGC-1α and NT-PGC-1α Is Differentially Regulated by Twist-1 in Brown Fat Metabolism

Hee-Jin Jun; Thomas W. Gettys; Ji Suk Chang

Brown fat expresses two PGC-1α isoforms (PGC-1α and NT-PGC-1α) and both play a central role in the regulation of cellular energy metabolism and adaptive thermogenesis by interacting with a wide range of transcription factors including PPARγ, PPARα, ERRα, and NRF1. PGC-1α consists of 797 amino acids, whereas alternative splicing of the PGC-1 α gene produces a shorter protein called NT-PGC-1α (aa 1–270). We report in this paper that transcriptional activity of PGC-1α and NT-PGC-1α is differently affected by the transcriptional regulator, Twist-1. Twist-1 suppresses PGC-1α but not NT-PGC-1α. The inhibition of PGC-1α activity by Twist-1 is mediated by direct interaction through the C-terminal region of PGC-1α (aa 353–797). Thus, the absence of the corresponding C-terminal domain in NT-PGC-1α allows NT-PGC-1α to be free from Twist-1-mediated inhibition. Overexpression of Twist-1 in brown adipocytes suppresses transcription of a subset of PGC-1α-target genes involved in mitochondrial fatty acid oxidation and uncoupling (CPT1β, UCP1, and ERRα). In contrast, NT-PGC-1α-mediated induction of these genes is unaffected by Twist-1. These findings show that differences in inhibitory protein-protein interactions of PGC-1α and NT-PGC-1α with Twist-1 lead to differential regulation of their function by Twist-1.


PLOS ONE | 2016

Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α

Jihyun Kim; Vivian Fernand; Tara M. Henagan; Jeho Shin; Peter Huypens; Susan Newman; Thomas W. Gettys; Ji Suk Chang

The β3-adrenergic receptor (AR) signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β3-AR signaling highly induces the expression of transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, which in turn activate the transcription program of adaptive thermogenesis by co-activating a number of transcription factors. We previously reported that NT-PGC-1α is able to increase mitochondrial number and activity in cultured brown adipocytes by promoting the expression of mitochondrial and thermogenic genes. In the present study, we performed genome-wide profiling of NT-PGC-1α-responsive genes in brown adipocytes to identify genes potentially regulated by NT-PGC-1α. Canonical pathway analysis revealed that a number of genes upregulated by NT-PGC-1α are highly enriched in mitochondrial pathways including fatty acid transport and β-oxidation, TCA cycle and electron transport system, thus reinforcing the crucial role of NT-PGC-1α in the enhancement of mitochondrial function. Moreover, canonical pathway analysis of NT-PGC-1α-responsive genes identified several metabolic pathways including glycolysis and fatty acid synthesis. In order to validate the identified genes in vivo, we utilized the FL-PGC-1α-/- mouse that is deficient in full-length PGC-1α (FL-PGC-1α) but expresses a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α254). The β3-AR-induced increase of NT-PGC-1α254 in FL-PGC-1α-/- brown and white adipose tissue was closely associated with elevated expression of genes involved in thermogenesis, mitochondrial oxidative metabolism, glycolysis and fatty acid synthesis. Increased adipose tissue thermogenesis by β3-AR activation resulted in attenuation of adipose tissue expansion in FL-PGC-1α-/- adipose tissue under the high-fat diet condition. Together, the data strengthen our previous findings that NT-PGC-1α regulates mitochondrial genes involved in thermogenesis and oxidative metabolism in brown and white adipocytes and further suggest that NT-PGC-1α regulates a broad spectrum of genes to meet cellular needs for adaptive thermogenesis.


Journal of Biological Chemistry | 2017

An Unexpected Role for the Transcriptional Coactivator Isoform NT-PGC-1α in the Regulation of Mitochondrial Respiration in Brown Adipocytes

Ji Suk Chang; Kyoungsoo Ha

Brown adipose tissue dissipates energy as heat, a process that relies on a high abundance of mitochondria and high levels of electron transport chain (ETC) complexes within these mitochondria. Two regulators of mitochondrial respiration and heat production in brown adipocytes are the transcriptional coactivator PGC-1α and its splicing isoform NT-PGC-1α, which control mitochondrial gene expression in the nucleus. Surprisingly, we found that, in brown adipocytes, some NT-PGC-1α localizes to mitochondria, whereas PGC-1α resides in the nucleus. Here we sought to investigate the role of NT-PGC-1α in brown adipocyte mitochondria. Immunocytochemistry, immunotransmission electron microscopy, and biochemical analyses indicated that NT-PGC-1α was located in the mitochondrial matrix in brown adipocytes. NT-PGC-1α was specifically enriched at the D-loop region of the mtDNA, which contains the promoters for several essential ETC complex genes, and was associated with LRP130, an activator of mitochondrial transcription. Selective expression of NT-PGC-1α and PGC-1α in PGC-1α−/− brown adipocytes similarly induced expression of nuclear DNA-encoded mitochondrial ETC genes, including the key mitochondrial transcription factor A (TFAM). Despite having comparable levels of TFAM expression, PGC-1α−/− brown adipocytes expressing NT-PGC-1α had higher expression of mtDNA-encoded ETC genes than PGC-1α−/− brown adipocytes expressing PGC-1α, suggesting a direct effect of NT-PGC-1α on mtDNA transcription. Moreover, this increase in mtDNA-encoded ETC gene expression was associated with enhanced respiration in NT-PGC-1α-expressing PGC-1α−/− brown adipocytes. Our findings reveal a previously unappreciated and isoform-specific role for NT-PGC-1α in the regulation of mitochondrial transcription in brown adipocytes and provide new insight into the transcriptional control of mitochondrial respiration.

Collaboration


Dive into the Ji Suk Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas W. Gettys

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth R. Henry

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge