Ji Wen Li
Henan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji Wen Li.
Advanced Materials Research | 2009
Shu Qing Yan; Jing Pei Xie; Wen Yan Wang; Ji Wen Li
In this study, some low-titanium aluminum alloys produced by electrolysis were prepared and the effect of various titanium contents on microstructure and tensile property of Zn-Al alloy was investigated. The test results showed that addition of titanium by electrolysis is an effective way to refine the grain size of Zn-Al alloy. As the titanium content is 0.04 wt%, the grain size becomes to be a minimum value and the tensile property of the alloy reaches to the maximum. Electrolysis showed that titanium atoms are to be some inherent particles in low-titanium aluminum alloy. These titanium atoms enter into the aluminum melt liquid and spread to the whole melt rapidly under stirring action of electromagnetic field of the electric current. The heterogeneous phase nuclei are high melting TiC and TiAl3 particles formed from in-situ precipitating trace C and Ti during cooling process. These in-situ precipitating heterogeneous nucleation sites with small dimension, high dispersity, cleaning interface and fine soakage with melt, have better capacity of heterogeneous nucleation than of exotic particles. It may inhibit grain growth faster and more effective in pinning dislocations, grain boundaries or sub-boundaries.
Applied Mechanics and Materials | 2011
Ji Wen Li; Guo Shang Zhang; Shi Zhong Wei; Qing Zhao
The solidified microstructure and the modified treatment have been systematic studied for the low carbon high boron Fe-C-B steel. The cast solidified microstructures of the low carbon high boron steel are consisted of the matrix and the boride phases. The matrix phase is consisted of the ferrite, pearlite and a few martensite phases. The boride phases of the hypoeutectic steel are based mainly on the Fe2B phase. With the increasing of the boron content, the Fe2B phase is decreased. When the boron content is excess 2.6wt.%, the boride phases are changed from the single Fe2B phase to the compound structures. Meanwell, the morphologies of the boride phases are transformed from the long strip-shaped and the fish-bone reticular structure to the rosette type. The boride phases of the eutectic steel are mainly the M2B phase. However, for the hypereutectic steel, it are composed of the M23(C, B)6 and B0.7Fe3C0.3 phases. The suitable modifier for the hypoeutectic low carbon high boron steel is the compound modifier 0.2%RE+0.2%Ti. After modified, the reticular boride phases are disconnected. Moreover, there existed some of isolated massive borides. The appropriate modifier for the hypereutectic steel is the compound modifier 0.9%Nb+0.4%RE. After modified, the primary borides are fine refined and tend to round.
Applied Mechanics and Materials | 2011
Shi Zhong Wei; Liu Jie Xu; Guo Shang Zhang; Ji Wen Li; Bao Zhu Dai
Mo-based composites with Al2O3 particles were developed in order to enhance the wear resistance of molybdenum alloys. Using Al2O3 power and pure Mo power as raw materials, the Molybdenum powders mixed with Al2O3 particles were prepared using planetary ball mill. And then the Mo-based composites with 3-10vol.% Alumina were prepared by compaction and sintering at 1840°C. The morphology of the Molybdenum powder and microstructure of the composites were analyzed by SEM and XRD. The micro-hardness, density and wear property of composites were researched. The results show that the microstructure of composites is composed of α-Al2O3 particles and Molybdenum matrix. With the increase of Alumina content, the microhardness of Molybdenum matrix increases, and the density first increases and then decreases. The friction coefficient of composite is scarcely affected by the alumina content. While the wear resistance of the composites rises with the increase of Alumina content. The wear failure is caused by abrasive wear characterized by obvious plow furrow and abrasive dust on the worn surface.
Advanced Materials Research | 2011
Liu Jie Xu; Guo Shang Zhang; Ji Wen Li; Zhan Wu Dong; Shi Zhong Wei
In recent years, high chromium cast irons have been widely applied in many fields because they have high hardness and abrasion resistance. However, high chromium cast irons are also expensive because much alloying elements, such as chromium, molybdenum and nickel, are added into them. In order to resolve above question, a new abrasion-resistant steel with high boron content was developed in this paper. The new high boron steel, with 0.6%~0.8%B and 0.65% C, was prepared using sand casting method. The microstructure and mechanical properties were researched. The results show that the solidification microstructure of as-cast high boron steel consists of boride (FeB) and matrix composed of pearlite, ferrite, and bainite. And the borides distributes along grain boundary in the form of network. After quenching at 980°C and tempering at 250°C, the FeB transforms to Fe2B, and the matrix transforms lath martensite. The hardness of as-cast high boron steel is 43HRC, and its impact toughness is 5J/cm2. After heat treatment, they increase to 56 HRC and 7J/cm2, respectively, approximating that of high chromium cast irons. The new high boron cast steel have a potential in stead of high chromium cast irons
Materials Science Forum | 2007
Ji Wen Li; Jing Pei Xie; Wen Yan Wang; Shi Zhong Wei
The fracture mechanisms of E-A356 alloys (T5 treatment) have been investigated by means of in situ SEM under nonaxial tension loading. It is found that the crack initiated at the casting defects, such as at the gas or the shrinkage pores, because of the debonding of the silicon particles from the Al matrix. The crack propagation was mainly in the Al matrix and along the matrix/particle interface secondarily. The crack growth could be influenced by the eutectic silicon particles, when it encountered the Si particles, the growth direction would be changed and turned toward the weaker areas. The fracture resistance or the mechanical properties of the E-A356 alloys will be improved by means of reducing, eliminating gas or shrinkage pores and increasing the interface bound strength of the eutectic silicon particles with the Al matrix.
Tribology Transactions | 2015
Shizhong Wei; Y. Liu; Guoshang Zhang; Liujie Xu; Ji Wen Li; Y. Y. Ren
In order to improve the wear resistance of Fe-Cr-C hardfacing alloy, titanium carbonitride was introduced in situ and a TiC-Tix(C,N)y coating was deposited on the surface of ASTM G3101 steel by a gas metal arc welding process. The microstructure and wear resistance of the hardfacing layer were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), macroscopic hardness meter, spectrometry, and transmission electron microscopy (TEM). The results show that the hardfacing layers mainly consist of (Cr,Fe)7C3, TiC carbides, Tix(C,N)y carbonitrides, and α-Fe (C0.14Fe1.86 and C0.12Fe1.88 martensite) (BCT) in addition to a low content of retained CFe15.1 austenite (FCC). The titanium carbonitride–reinforced coating has high hardness and excellent wear resistance under dry sliding wear test conditions.
Advanced Materials Research | 2011
Jing Pei Xie; Ai Qin Wang; Wen Yan Wang; Ji Wen Li; Di Xin Yang; Ke Feng Zhang; Dou Qin Ma
The influences of non-metallic inclusions on the quality and properties of the steel not only depended on the quantity of inclusions, but also on the type、shape、size、deformation behavior and distribution condition. By means of ANSYS finite element analysis software, the stress field distribution in the inclusions and the matrix around the inclusions are analyzed under the condition of different kinds of types、shapes、distributions with changeable load in heavy rudder arm steel castings, then micromechanics behavior of inclusions is investigated from angle of macro mechanics.
Materials Science Forum | 2010
Liu Jie Xu; Shi Zhong Wei; Ying Ping Ji; Guo Shang Zhang; Ji Wen Li; Rui Long
The high vanadium high-speed steel (HVHSS) with about 9wt% vanadium and different carbon contents were prepared using casting process. The effects of carbon on wear properties of HVHSS were studied using pin-on-ring tester, and the failure behaviors were investigated via SEM. Results show the optimal wear resistance is obtained when HVHSS possesses moderate carbon content (2.58wt.%). The cause is that the matrix microstructure of moderate carbon HVHSS is mainly low-carbon lath martensite with good toughness and high hardness, and it can effectively resist micro-cutting and figure wear at the same time, so the role of high-hardness vanadium carbides (VC) can be played enough because of the strong support of matrix. If carbon content is too low, the wear failure of HVHSS is mainly caused by severe micro-cutting and adhesive wear on contact surface because the matrix microstructure of high speed steel is ferrite with very low hardness, which leads to poor wear resistance. While, the matrix microstructure is mainly composed of high carbon martensite with poor toughness when carbon content is too high, therefore, it possesses very poor resistance to cycle fatigue and thermal fatigue, resulting in decrease of wear resistance.
Advanced Materials Research | 2010
Liu Jie Xu; Shi Zhong Wei; Guo Shang Zhang; Ji Wen Li; Xiang Dong Ma; Bao Zhu Dai
To enhance the wear resistance of molybdenum alloys, Mo-based composites reinforced by Al2O3 ceramic particles were developed. Using Al(NO3)3 aqueous solution and MoO3 as raw materials, the Molybdenum powders mixed with Al2O3 particles were prepared by liquid-solid incorporation, drying, pyrolysis of Al(NO3)3 and deoxidation of MoO3 by H2. And then the Mo-based composites with 3-10vol.% Alumina were prepared by compaction and sintering at 1840°C. The morphology of the Molybdenum powder and microstructure of the composites were analyzed by SEM and XRD. The micro-hardness, density and wear property of composites were researched. The results showed that α-Al2O3 ceramic particles and Molybdenum matrix compose the composites. With the increase of Alumina content, the molybdenum powders become fine and rule, the grains of composites become fine, the microhardness of Molybdenum matrix increases, and the density first increases and then decreases. The friction coefficient of composite is scarcely affected by the alumina content. While the wear weight of the composite decrease with the increase of Alumina content. There are obvious plow furrow and abrasive dust on the worn surface, showing the abrasive wear characterization.
Materials Science Forum | 2016
Shi Ming Hao; Jing Pei Xie; Li Ben Li; Ai Qin Wang; Wen Yan Wang; Ji Wen Li
In order to explore the compressive properties of aluminium matrix composite reinforced with middle content SiC particles, hot compression behavior of 30%SiCp/2024A1 composite was investigated using Gleeble-1500 system at a temperatures range from 350 to 500°C and strain rates from 0.01 to 10 s−1. The associated structural changes were studied by OM, SEM and TEM observations. The results show that the true stress–true strain curves exhibited a peak stress at a small strain (<0.1), after which the flow stresses decreased monotonically until high strains, showing a dynamic flow softening. The stress level decreased with increasing deformation temperature and decreasing strain rate, indicating that the composite is a positive strain rate sensitive material. And therefore there will be a enough time for dynamic recrystallization to complete nucleation and growth at low strain rate and high deformation temperatures.