Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji Yao Li is active.

Publication


Featured researches published by Ji Yao Li.


Endocrinology | 2008

Effect of Des-acyl Ghrelin on Adiposity and Glucose Metabolism

Weizhen Zhang; Biaoxin Chai; Ji Yao Li; Hui Wang; Michael W. Mulholland

Ghrelin, a gastric peptide hormone, has been reported to regulate GH secretion and energy homeostasis. Here, we examined the effect of des-acyl ghrelin driven from the fatty acid-binding protein-4 (FABP4) promoter on adiposity and glucose metabolism. A high level of expression of des-acyl ghrelin (692 +/- 293 fmol/g fat) in adipose tissue was detected in FABP4-ghrelin transgenic mice, but not in wild-type littermates. Circulating des-acyl ghrelin was significantly higher in FABP4-ghrelin transgenic mice (8409 +/- 3390 pm) compared with wild-type mice (513 +/- 58 pm). No significant change was observed for plasma acylated ghrelin and obestatin. Epididymal and perirenal fat masses decreased 35 +/- 9 and 52 +/- 9%, respectively, in FABP4-ghrelin transgenic mice. FABP4-ghrelin transgenic mice are resistant to obesity induced by high-fat diet. Brown fat mass was not affected by overexpression of ghrelin in adipose tissue. Glucose tolerance tests showed glucose levels to be significantly lower in FABP4-ghrelin transgenic mice than in controls after glucose administration. Insulin sensitivity testing showed that FABP4-ghrelin transgenic mice had a 28 +/- 5% greater hypoglycemic response to insulin. Our study demonstrates that overexpression of ghrelin from the FABP4 promoter impairs the development of white adipose tissues, and alters glucose tolerance and insulin sensitivity in mice.


Peptides | 2003

Inverse agonist activity of agouti and agouti-related protein

Biao Xin Chai; Richard R. Neubig; Glenn L. Millhauser; Darren A. Thompson; Pilgrim J. Jackson; Gregory S. Barsh; Chris J. Dickinson; Ji Yao Li; Yu Mei Lai; Ira Gantz

Agouti and agouti-related protein (AgRP) are endogenous antagonists of the melanocortin receptors (MCxR). Previous data showed that recombinant full-length agouti and a synthetic fragment of AgRP, AgRP (83-132), are inverse agonists at the MC1R and MC4R, respectively. This study demonstrates the smaller analogs AgRP (87-120) and ASIP [90-132 (L89Y)], and short peptides Yc[CRFFNAFC]Y and Qc[CRFFRSAC]S are also MC4R inverse agonists. Furthermore, the relative affinity of the series of MC4R ligands for displacement of radiolabeled antagonist 125I-AgRP (86-132) versus radiolabeled agonist 125I-NDP-MSH did not correlate with ligand efficacy, which is more consistent with an induced-fit model than a simple two-state model of MC4R activation. These data shed new light on the determinants and mechanism of inverse agonism at the MC4R.


Peptides | 2006

Melanocortin-4 receptor-mediated inhibition of apoptosis in immortalized hypothalamic neurons via mitogen-activated protein kinase.

Biaoxin Chai; Ji Yao Li; Weizhen Zhang; Erika A. Newman; John B. Ammori; Michael W. Mulholland

The melanocortin-4 receptor (MC4R) is a seven transmembrane member of the melanocortin receptor family. The GT1-1 cell line exhibits endogenous expression of MC4R. In this study, GT1-1 cells were used to study MC4R signaling pathways and to examine the effects of melanocortin receptor agonist NDP-MSH on apoptosis. MC4R mRNA expression was demonstrated by RT-PCR. Functional melanocortin receptor expression was implied by specific binding of NDP-MSH and cAMP production. NDP-MSH-stimulated GnRH release in a dose-dependent manner. Serum deprivation-induced apoptosis in GT1-1 cells, and the NDP-MSH inhibited this effect. The melanocortin receptor antagonist SHU9119 blocked the antiapoptotic actions of NDP-MSH, and the MAP kinase inhibitor PD98059 significantly attenuated the antiapoptotic effect. NDP-MSH-stimulated ERK1/2 phosphorylation in a dose-dependent manner. ERK1/2 phosphorylation could be abolished by SHU9119. In GT1-1 cells, melanocortin receptor activation causes ERK1/2 phosphorylation. In these cells, MC4R activation is also associated with antiapoptotic effects.


Journal of Biological Chemistry | 1999

Contribution of Melanocortin Receptor Exoloops to Agouti-related Protein Binding

Ying Kui Yang; Chris J. Dickinson; Qun Zeng; Ji Yao Li; Darren A. Thompson; Ira Gantz

Agouti-related protein (AGRP) is an endogenous antagonist of melanocortin action that functions in the hypothalamic control of feeding behavior. Although previous studies have shown that AGRP binds three of the five known subtypes of melanocortin receptor, the receptor domains participating in binding and the molecular interactions involved are presently unknown. The present studies were designed to examine the contribution of extracytoplasmic domains of the melanocortin-4 receptor (MC4R) to AGRP binding by making chimerical receptor constructs of the human melanocortin-1 receptor (MC1R; a receptor that is not inhibited by AGRP) and the human MC4R (a receptor that is potently inhibited by AGRP). Substitutions of the extracytoplasmic NH2 terminus and the first extracytoplasmic loop (exoloop) of the MC4R with homologous domains of the MC1R had no effect on AGRP (87–132) binding affinity or inhibitory activity (the ability to inhibit melanocortin-stimulated cAMP generation). In contrast, cassette substitutions of exoloops 2 and 3 of the MC4R with the homologous exoloops of the MC1R resulted in a substantial loss of AGRP binding affinity and inhibitory activity. Conversely, the exchange of exoloops 2 and 3 of the MC1R with the homologous exoloops of the MC4R was found to confer AGRP binding and inhibitory activity to the basic structure of the MC1R. Importantly, these substitutions did not affect the ability of the α-melanocyte stimulating hormone analogue [Nle4,d-Phe7] melanocyte stimulating hormone to bind or activate the chimeric receptors. These data indicate that exoloops 2 and 3 of the melanocortin receptors are important for AGRP binding.


Regulatory Peptides | 2007

Melanocortin-3 receptor activates MAP kinase via PI3 kinase.

Biaoxin Chai; Ji Yao Li; Weizhen Zhang; John B. Ammori; Michael W. Mulholland

HEK 293 cells stably expressing human melanocortin-3 receptor (MC3R) were exposed to melanocortin receptor agonist, NDP-MSH (10(-)(10)-10(-)(6) M). ERK1/2 was phosphorylated in a dose-dependent manner with an EC(50) of 3.3+/-1.5 x 10(-)(9) M, similar to the IC(50) of NDP-MSH binding to the MC3R. ERK1/2 phosphorylation was blocked by the melanocortin receptor antagonists SHU9119. NDP-MSH-induced ERK1/2 phosphorylation was sensitive to pertussis toxin and the PI3K inhibitor, wortmannin. Rp-cAMPS, BAPTA-AM and Myr-PKC did not inhibit the NDP-MSH-induced ERK1/2 phosphorylation. NDP-MSH stimulated cellular proliferation in a dose-dependent manner with a similar EC(50) to ERK1/2 phosphorylation, 2.1+/-0.6 x 10(-)(9) M. Cellular proliferation was blocked by AGRP (86-132) and by the MEK inhibitor, PD98059. The NDP-MSH did not inhibit serum deprivation-induced apoptosis. MC3R activation induces ERK1/2 phosphorylation via PI3K and this pathway is involved in cellular proliferation in HEK cells expressing MC3R.


Regulatory Peptides | 2001

Agouti-related protein is a mediator of diabetic hyperphagia.

Song Yi Qu; Ying Kui Yang; Ji Yao Li; Qun Zeng; Ira Gantz

To explore the role of agouti-related protein (AGRP) in diabetic hyperphagia changes in hypothalamic AGRP mRNA levels were examined in diabetic rats. Rats rendered diabetic by streptozotocin displayed marked hyperglycemia (blood glucose 456.0+/-8.4 mg/dl versus 71.8+/-1.9 mg/dl) and hyperphagia (36.9+/-1.0 g/day versus 22.0+/-0.4 g/day), that was associated with a 286.6+/-4.4% increase in hypothalamic AGRP mRNA and a 178.9+/-13.5% increase in hypothalamic NPY mRNA. Insulin treatment of diabetic rats partially corrected blood glucose (147.4+/-13.1 mg/dl) and ameliorated hyperphagia (26.6+/-2.0 g/day). Insulin replacement was also associated with a return of hypothalamic AGRP mRNA (111.7+/-8.3% of controls) and NPY mRNA (125.0+/-8.9% of controls) from the elevated levels that were observed in untreated diabetic rats. In contrast to insulin treated rats, sodium orthovanadate treated diabetic rats remained significantly hyperglycemic (361.5+/-12.5 mg/dl). However, despite their persistent hyperglycemia, orthovanadate treated diabetic rats were still observed to have a significant reduction of hypothalamic AGRP mRNA (138.7+/-11.4%) and NPY mRNA (129.9+/-9.8%). Simultaneous measurement of serum leptin revealed suppressed levels in both untreated diabetic (0.5+/-0.1 ng/ml) and sodium orthovanadate treated rats (0.5+/-0.1 ng/ml) compared to non-diabetic controls (2.1+/-0.1 ng/ml). These data indicate that AGRP is a mediator of diabetic hyperhpagia and suggest that insulin can directly influence hypothalamic AGRP and NPY mRNA expression.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Nesfatin-1 inhibits gastric acid secretion via a central vagal mechanism in rats

Ze Feng Xia; Danielle Fritze; Ji Yao Li; Biaoxin Chai; Chao Zhang; Weizhen Zhang; Michael W. Mulholland

Nesfatin-1, a novel hypothalamic peptide, inhibits nocturnal feeding behavior and gastrointestinal motility in rodents. The effects of nesfatin-1 on gastrointestinal secretory function, including gastric acid production, have not been evaluated. Nesfatin-1 was injected into the fourth intracerebral ventricle (4V) of chronically cannulated rats to identify a nesfatin dose sufficient to inhibit food intake. Nesfatin-1 (2 μg) inhibited dark-phase food intake, in a dose-dependent fashion, for >3 h. Gastric acid production was evaluated in urethane-anesthetized rats. Nesfatin-1 (2 μg) was introduced via the 4V following endocrine stimulation of gastric acid secretion by pentagastrin (2 μg·kg(-1)·h(-1) iv), vagal stimulation with 2-deoxy-D-glucose (200 mg/kg sc), or no stimulus. Gastric secretions were collected via gastric cannula and neutralized by titration to determine acid content. Nesfatin-1 did not affect basal and pentagastrin-stimulated gastric acid secretion, whereas 2-deoxy-D-glucose-stimulated gastric acid production was inhibited by nesfatin-1 in a dose-dependent manner. c-Fos immunofluorescence in brain sections was used to evaluate in vivo neuronal activation by nesfatin-1 administered via the 4V. Nesfatin-1 caused activation of efferent vagal neurons, as evidenced by a 16-fold increase in the mean number of c-Fos-positive neurons in the dorsal motor nucleus of the vagus (DMNV) in nesfatin-1-treated animals vs. controls (P < 0.01). Finally, nesfatin-induced Ca(2+) signaling was evaluated in primary cultured DMNV neurons from neonatal rats. Nesfatin-1 caused dose-dependent Ca(2+) increments in 95% of cultured DMNV neurons. These studies demonstrate that central administration of nesfatin-1, at doses sufficient to inhibit food intake, results in inhibition of vagally stimulated secretion of gastric acid. Nesfatin-1 activates DMNV efferent vagal neurons in vivo and triggers Ca(2+) signaling in cultured DMNV neurons.


Peptides | 2009

Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling

Biaoxin Chai; Ji Yao Li; Weizhen Zhang; Hui Wang; Michael W. Mulholland

The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1(ser307) phosphorylation, effects also reversed by a specific melanocortin receptor antagonist. NDP-MSH augmented insulin-stimulated AKT phosphorylation in vitro. The melanocortin agonist melanotan II increased insulin-stimulated AKT phosphorylation in the rat hypothalamus in vivo. NDP-MSH increased insulin-stimulated glucose uptake in hypothalamic GT1-1 cells. The current study shows that the melanocortinergic system interacts with insulin signaling via novel effects on JNK activity.


BMC Neuroscience | 2011

Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation

Ji Yao Li; Biaoxin Chai; Weizhen Zhang; Xiaobin Wu; Chao Zhang; Danielle Fritze; Zefeng Xia; Cam Patterson; Michael W. Mulholland

BackgroundThe arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4) is expressed in neuropeptide Y and proopiomelanocortin (POMC) neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s) of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4) is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling.ResultsIn situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308.ConclusionsThese data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.


Journal of Neuroendocrinology | 2005

Arcuate nucleus transcriptome profiling identifies ankyrin repeat and suppressor of cytokine signalling box-containing protein 4 as a gene regulated by fasting in central nervous system feeding circuits

Ji Yao Li; R. Kuick; Robert C. Thompson; D. E. Misek; Y. M. Lai; Y. Q. Liu; Biaoxin Chai; S. M. Hanash; I. Gantz

The arcuate nucleus of the hypothalamus is a primary site for sensing blood borne nutrients and hormonal messengers that reflect caloric status. To identify novel energy homeostatic genes, we examined RNA extracts from the microdissected arcuate nucleus of fed and 48‐h fasted rats using oligonucleotide microarrays. The relative abundance of 118 mRNA transcripts was increased and 203 mRNA transcripts was decreased during fasting. One of the down‐regulated mRNAs was ankyrin‐repeat and suppressor of cytokine signalling box‐containing protein 4 (Asb‐4). The predicted structure of Asb‐4 protein suggested that it might encode an intracellular regulatory protein, and therefore its mRNA expression was investigated further. Reverse transcription quantitative polymerase chain reaction was used to validate down‐regulation of Asb‐4 mRNA in the arcuate nucleus of the fasted Sprague‐Dawley rat (relative expression of Asb‐4 mRNA: fed = 4.66 ± 0.26; fasted = 3.96 ± 0.23; n = 4, P < 0.01). Down‐regulation was also demonstrated in the obese fa/fa Zucker rat, another model of energy disequilibrium (relative expression of Asb‐4 mRNA: lean Zucker = 3.91 ± 0.32; fa/fa = 2.93 ± 0.26; n = 5, P < 0.001). In situ hybridisation shows that Asb‐4 mRNA is expressed in brain areas linked to energy homeostasis, including the arcuate nucleus, paraventricular nucleus, dorsomedial nucleus, lateral hypothalamus and posterodorsal medial amygdaloid area. Double in situ hybridisation revealed that Asb‐4 mRNA colocalises with key energy homeostatic neurones. In the fed state, Asb‐4 mRNA is expressed by 95.6% of pro‐opiomelanocortin (POMC) neurones and 46.4% of neuropeptide Y (NPY) neurones. By contrast, in the fasted state, the percentage of POMC neurones expressing Asb‐4 mRNA drops to 73.2% (P < 0.001). Moreover, the density of Asb‐4 mRNA per fasted POMC neurone is markedly decreased. Conversely, expression of Asb‐4 mRNA by NPY neurones in the fasted state is modestly increased to 52.7% (P < 0.05). Based on its differential expression, neuroanatomical distribution and colocalisation, we hypothesise that Asb‐4 is a gene involved in energy homeostasis.

Collaboration


Dive into the Ji Yao Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ira Gantz

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Zhang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wang

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge