Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji Yeun Kim is active.

Publication


Featured researches published by Ji Yeun Kim.


Biosensors and Bioelectronics | 2017

An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections.

Bonhan Koo; Choong Eun Jin; Tae Yoon Lee; Jeong Hoon Lee; Mi Kyoung Park; Heungsup Sung; Se Yoon Park; Hyun Jung Lee; Sun Mi Kim; Ji Yeun Kim; Sung-Han Kim; Yong Shin

Abstract Recently, RNA viral infections caused by respiratory viruses, such as influenza, parainfluenza, respiratory syncytial virus, coronavirus, and Middle East respiratory syndrome-coronavirus (MERS-CoV), and Zika virus, are a major public health threats in the world. Although myriads of diagnostic methods based on RNA amplification have been developed in the last decades, they continue to lack speed, sensitivity, and specificity for clinical use. A rapid and accurate diagnostic method is needed for appropriate control, including isolation and treatment of the patients. Here, we report an isothermal, label-free, one-step RNA amplification and detection system, termed as iROAD, for the diagnosis of respiratory diseases. It couples a one-step isothermal RNA amplification method and a bio-optical sensor for simultaneous viral RNA amplification/detection in a label-free and real-time manner. The iROAD assay offers a one-step viral RNA amplification/detection example to rapid analysis (<20min). The detection limit of iROAD assay was found to be 10-times more sensitive than that of real-time reverse transcription-PCR method. We confirmed the clinical utility of the iROAD assay by detecting viral RNAs obtained from 63 human respiratory samples. We envision that the iROAD assay will be useful and potentially adaptable for better diagnosis of emerging infectious diseases including respiratory diseases.


Journal of Hospital Infection | 2017

Molecular epidemiology and environmental contamination during an outbreak of parainfluenza virus 3 in a haematology ward

Taeeun Kim; Choong Eun Jin; Heungsup Sung; Bonhan Koo; Junsoo Park; Sun-Mi Kim; Ji Yeun Kim; Yong-Phil Chong; Sung-Koo Lee; S.-H. Choi; Y. S. Kim; J. H. Woo; J.H. Lee; Lee Kh; Yong Shin; Sung Hoon Kim

Summary Background Although fomites or contaminated surfaces have been considered as transmission routes, the role of environmental contamination by human parainfluenza virus type 3 (hPIV-3) in healthcare settings is not established. Aim To describe an hPIV-3 nosocomial outbreak and the results of environmental sampling to elucidate the source of nosocomial transmission and the role of environmental contamination. Methods During an hPIV-3 outbreak between May and June 2016, environmental surfaces in contact with clustered patients were swabbed and respiratory specimens used from infected patients and epidemiologically unlinked controls. The epidemiologic relatedness of hPIV-3 strains was investigated by sequencing of the haemagglutinin–neuraminidase and fusion protein genes. Findings Of 19 hPIV-3-infected patients, eight were haematopoietic stem cell recipients and one was a healthcare worker. In addition, four had upper and 12 had lower respiratory tract infections. Of the 19 patients, six (32%) were community-onset infections (symptom onset within <7 days of hospitalization) and 13 (68%) were hospital-onset infections (≥7 days of hospitalization). Phylogenetic analysis identified two major clusters: five patients, and three patients plus one healthcare worker. Therefore, seven (37%) were classified as nosocomial transmissions. hPIV-3 was detected in 21 (43%) of 49 environmental swabs up to 12 days after negative respiratory polymerase chain reaction conversion. Conclusion At least one-third of a peak season nosocomial hPIV-3 outbreak originated from nosocomial transmission, with multiple importations of hPIV-3 from the community, providing experimental evidence for extensive environmental hPIV-3 contamination. Direct contact with the contaminated surfaces and fomites or indirect transmission from infected healthcare workers could be responsible for nosocomial transmission.


Clinical Chemistry | 2017

Rapid Diagnosis of Tick-Borne Illnesses by Use of One-Step Isothermal Nucleic Acid Amplification and Bio-Optical Sensor Detection

Ji Yeun Kim; Bonhan Koo; Choong Eun Jin; Min Chul Kim; Yong Pil Chong; Sang-Oh Lee; Sang-Ho Choi; Yang Soo Kim; Jun Hee Woo; Yong Shin; Sung-Han Kim

BACKGROUND Scrub typhus and severe fever with thrombocytopenia syndrome (SFTS) are the most common tick-borne illnesses in South Korea. Early differentiation of SFTS from scrub typhus in emergency departments is essential but difficult because of their overlapping epidemiology, shared risk factors, and similar clinical manifestations. METHODS We compared the diagnostic performance of one-step isothermal nucleic acid amplification with bio-optical sensor detection (iNAD) under isothermal conditions, which is rapid (20-30 min), with that of real-time PCR, in patients with a confirmed tick-borne illness. Fifteen patients with confirmed SFTS who provided a total of 15 initial blood samples and 5 follow-up blood samples, and 21 patients with confirmed scrub typhus, were evaluated. RESULTS The clinical sensitivity of iNAD (100%; 95% CI, 83-100) for SFTS was significantly higher than that of real-time PCR (75%; 95% CI, 51-91; P = 0.047), while its clinical specificity (86%; 95% CI, 65-97) was similar to that of real-time PCR (95%; 95% CI, 77-99; P = 0.61). The clinical sensitivity of iNAD for scrub typhus (100%; 95% CI, 81-100) was significantly higher than that of real-time PCR for scrub typhus (67%; 95% CI, 43-85; P = 0.009), while its clinical specificity (90%; 95% CI, 67-98) was similar to that of real-time PCR (95%; 95% CI, 73-100; P > 0.99). CONCLUSIONS iNAD is a valuable, rapid method of detecting SFTS virus and Orientia tsutsugamushi with high clinical sensitivity and specificity.


Analytical Chemistry | 2017

Use of Dimethyl Pimelimidate with Microfluidic System for Nucleic Acids Extraction without Electricity

Choong Eun Jin; Tae Yoon Lee; Bonhan Koo; Kyung-Chul Choi; Suhwan Chang; Se Yoon Park; Ji Yeun Kim; Sung-Han Kim; Yong Shin

The isolation of nucleic acids in the lab on a chip is crucial to achieve the maximal effectiveness of point-of-care testing for detection in clinical applications. Here, we report on the use of a simple and versatile single-channel microfluidic platform that combines dimethyl pimelimidate (DMP) for nucleic acids (both RNA and DNA) extraction without electricity using a thin-film system. The system is based on the adaption of DMP into nonchaotropic-based nucleic acids and the capture of reagents into a low-cost thin-film platform for use as a microfluidic total analysis system, which can be utilized for sample processing in clinical diagnostics. Moreover, we assessed the use of the DMP system for the extraction of nucleic acids from various samples, including mammalian cells, bacterial cells, and viruses from human disease, and we also confirmed that the quality and quantity of the nucleic acids extracted were sufficient to allow for the robust detection of biomarkers and/or pathogens in downstream analysis. Furthermore, this DMP system does not require any instruments and electricity, and has improved time efficiency, portability, and affordability. Thus, we believe that the DMP system may change the paradigm of sample processing in clinical diagnostics.


The Journal of Infectious Diseases | 2018

Diagnostic Usefulness of Varicella-Zoster Virus Real-Time Polymerase Chain Reaction Analysis of DNA in Saliva and Plasma Specimens From Patients With Herpes Zoster

Seong Yeon Park; Ji Yeun Kim; Ji-Ae Kim; Ji-Soo Kwon; Sun-Mi Kim; Na Young Jeon; Min-Chul Kim; Yong Pil Chong; Sang-Oh Lee; Sang-Ho Choi; Yang Soo Kim; Jun Hee Woo; Sung-Han Kim

Background We evaluated the diagnostic usefulness of polymerase chain reaction (PCR) analysis for detecting varicella-zoster virus (VZV) infection and reactivation of VZV, using DNA extracted from saliva and plasma specimens obtained from subjects with suspected herpes zoster and from healthy volunteers during stressful and nonstressful conditions. Methods There were 52 patients with a diagnosis of herpes zoster (group 1), 30 with a diagnosis of zoster-mimicking disease (group 2), and 27 healthy volunteers (group 3). Saliva and plasma samples were evaluated for VZV DNA by real-time PCR analysis. Results Among patients with suspected herpes zoster (ie, patients in groups 1 and 2), the sensitivity of PCR analysis of salivary DNA for detecting VZV (88%; 95% confidence interval [CI], 74%-95%) was significantly higher than that of PCR analysis of plasma DNA (28%; 95% CI, 16%-44%; P < .001), whereas the specificity of PCR analysis of salivary DNA (100%; 95% CI, 88%-100%) was similar to that of PCR analysis of plasma DNA (100%; 95% CI, 78%-100%; P > .99). VZV DNA was not detected in saliva and plasma samples from group 3 (0%; 95% CI, 0%-14%). Conclusions Real-time PCR analysis of salivary DNA is more sensitive than that of plasma DNA for detecting VZV among patients with suspected herpes zoster. We found no subclinical reactivation of VZV in group 3 following exposure to common stressful conditions.


Journal of Clinical Virology | 2018

Kinetics of viral load and cytokines in severe fever with thrombocytopenia syndrome

Ji-Soo Kwon; Min-Chul Kim; Ji Yeun Kim; Na-Young Jeon; Byunghan Ryu; Jeongmin Hong; Min-Jae Kim; Yong Pil Chong; Sang-Oh Lee; Sang-Ho Choi; Yang Soo Kim; Jun Hee Woo; Sung-Han Kim

Abstract Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease in China, Japan, and Korea, which is characterized by high fever, thrombocytopenia, and high mortality. It is hypothesized that a cytokine storm plays an important role in the pathophysiology of SFTS. However, limited data have been published on the detailed kinetics of the viral load and cytokine profiles throughout the course of this disease. Objectives We investigated the patterns of changes in cytokines and viral load in SFTS patients. Study design During the admission period of patients, RNA was extracted from plasma and quantified by reverse transcription polymerase chain reaction. In addition, cytokine bead arrays were performed for the 18 cytokines and chemokines selected for testing. Results The median time from admission to the negative conversion of SFTS viremia was 17.0 days. When censored patients were found to be negative for viral load at discharge, the median duration of viral shedding was 13.0 days (95% CI, 5.4–20.6). Interferon (IFN)-α, interleukin (IL)-10, and IFN-γ-induced protein (IP)-10 concentrations significantly increased in the early course of disease and then decreased during the hospital stay. However, the concentrations of tumor necrosis factor-α, IL-1β, IL-12p40, IL-13, IL-17A, Regulated on Activation and Normally T-cell Expressed and Secreted (RANTES), and vascular endothelial growth factor (VEGF) increased during the late course of disease. Initial IP-10 levels during hospital days 1–4 were the most significantly correlated with initial viral load (r = 0.88, P < .01). Conclusion SFTS viremia persisted until weeks 2–3 and was highly correlated with initial plasma IP-10 levels. In addition, IFN-α, IL-10, and IP-10 were associated with the initial cytokine storm in SFTS.


Biosensors and Bioelectronics | 2018

Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens

Choong Eun Jin; Bonhan Koo; Eun Yeong Lee; Ji Yeun Kim; Sung-Han Kim; Yong Shin

Abstract Diseases caused by pathogenic microorganisms including bacteria and viruses can cause serious medical issues including death and result in huge economic losses. Despite the myriad of recent advances in the rapid and accurate detection of pathogens, large volume clinical samples with a low concentration of pathogens continue to present challenges for diagnosis and surveillance. We here report a simple and label-free approach via homobifunctional imidoesters (HIs) with a microfluidic platform (SLIM) to efficiently enrich and extract pathogens at low concentrations from clinical samples. The SLIM system consists of an assembled double microfluidic chip for streamlining large volume processing and HIs for capturing pathogens and isolating nucleic acids by both electrostatic and covalent interaction without a chaotropic detergent or bulky instruments. The SLIM system significantly increases the enrichment and extraction rate of pathogens (up to 80% at 10 CFU (colony forming unit) in a 1 mL volume within 50 min). We demonstrated its clinical utility in large sample volumes from 46 clinical specimens including environmental swabs, saliva, and blood plasma. The SLIM system showed higher sensitivity with these samples and could detect pathogens that were below the threshold of detection with other methods. Finally, by combining our SLIM approach with an isothermal optical sensor, pathogens could be detected at a very high sensitivity in blood plasma samples within 80 min via enrichment, extraction and detection steps. Our SLIM system thus provides a simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform for use with large volume clinical samples and would thus have significant utility for various infectious diseases.


Journal of Infection | 2018

Combined IFN-γ and TNF-α release assay for differentiating active tuberculosis from latent tuberculosis infection

Ji Yeun Kim; Joung Ha Park; Min Chul Kim; Hye Hee Cha; Na-Young Jeon; Seong Yeon Park; Min-Jae Kim; Yong-Phil Chong; Sang Oh Lee; Sang-Ho Choi; Yang Soo Kim; Jun Hee Woo; Sung-Han Kim

OBJECTIVES The IFN-γ-release assay (IGRA) cannot differentiate active tuberculosis (TB) from latent TB infection (LTBI). We hypothesized that the TNF-α-release assay (TARA) combined with IGRA might discriminate active TB from not active TB without LTBI. METHODS Adult patients with suspected TB, and with unrelated diseases such as herpes zoster as controls, were enrolled in an intermediate TB-burden country. Patients with confirmed or probable TB were regarded as active TB, and patients with not active TB were further classified as those having not active TB with and without LTBI based on IGRA results. The IGRA and TARA by using ELISPOT assays were performed on peripheral mononuclear cells. RESULTS Thirty six patients with active TB and 53 patients including 18 not active TB with LTBI and 35 not active TB without LTBI were finally included. The sensitivity and specificity of the IGRA for those patients found to have active TB were 94% (CI, 80-99) and 66% (CI 52-78), respectively. Combining the IGRA and the TARA substantially increased the specificity for active TB (93%, CI, 82-98; P = 0.001) compared with the IGRA only, without compromising sensitivity (89%, CI, 73-96; P = 0.67). CONCLUSIONS Combining the IGRA and TARA appears to be useful for diagnosing active TB.


Journal of Biophotonics | 2018

A rapid bio-optical sensor for diagnosing Q fever in clinical specimens

Bonhan Koo; Choong Eun Jin; Se Yoon Park; Tae Yoon Lee; Jeonghun Nam; Young-Rock Jang; Sun Mi Kim; Ji Yeun Kim; Sung-Han Kim; Yong Shin

Recent zoonotic outbreaks, such as Zika, Middle East respiratory syndrome and Ebola, have highlighted the need for rapid and accurate diagnostic assays that can be used to aid pathogen control. Q fever is a zoonotic disease caused by the transmission of Coxiella burnetii that can cause serious illness in humans through aerosols and is considered a potential bioterrorism agent. However, the existing assays are not suitable for the detection of this pathogen due to its low levels in real samples. We here describe a rapid bio-optical sensor for the accurate detection of Q fever and validate its clinical utility. By combining a bio-optical sensor, that transduces the presence of the target DNA based on binding-induced changes in the refractive index on the waveguide surface in a label-free and real-time manner, with isothermal DNA amplification, this new diagnostic tool offers a rapid (<20 min), 1-step DNA amplification/detection method. We confirmed the clinical sensitivity (>90%) of the bio-optical sensor by detecting C. burnetii in 11 formalin-fixed, paraffin-embedded liver biopsy samples from acute Q fever hepatitis patients and in 16 blood plasma samples from patients in which Q fever is the cause of fever of unknown origin.


Biosensors and Bioelectronics | 2018

Arch-shaped multiple-target sensing for rapid diagnosis and identification of emerging infectious pathogens

Bonhan Koo; Ki Ho Hong; Choong Eun Jin; Ji Yeun Kim; Sung-Han Kim; Yong Shin

Abstract Rapid identification of emerging infectious pathogens is crucial for preventing public health threats. Various pathogen detection techniques have been introduced; however, most techniques are time-consuming and lack multiple-target detection specificity. Although multiple-target detection techniques can distinguish emerging infectious pathogens from related pathogens, direct amplification methods have not been widely examined. Here, we present a novel arch-shaped multiple-target sensor capable of rapid pathogen identification using direct amplification in clinical samples. In this study, an arch-shaped amplification containing primer sequences was designed to rapidly amplify multiple targets. Further, the sensing platform allowed for sensitive and specific detection of human coronavirus, Middle East respiratory syndrome, Zika virus, and Ebola virus down to several copies. This platform also simultaneously distinguished between Middle East respiratory syndrome and human coronavirus in clinical specimens within 20 min. This arch-shaped multiple-target sensing assay can provide rapid, sensitive, and accurate diagnoses of emerging infectious diseases in clinical applications.

Collaboration


Dive into the Ji Yeun Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Yoon Park

Soonchunhyang University

View shared research outputs
Researchain Logo
Decentralizing Knowledge