Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji-Young Park is active.

Publication


Featured researches published by Ji-Young Park.


Science | 2014

Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone

Curtis G. Wilkerson; Shawn D. Mansfield; Fachuang Lu; Saunia Withers; Ji-Young Park; Steven D. Karlen; Eliana Gonzales-Vigil; Dharshana Padmakshan; Faride Unda; Jorge Rencoret; John Ralph

Constructed for Deconstruction Lignin provides strength to wood but also impedes efficient degradation when wood is used as biofuel. Wilkerson et al. (p. 90) engineered poplar to produce lignin that is more amenable to degradation. From a handful of plants that contain more digestible lignin monomers, Angelica sinensis was selected and its monolignol transferase activities analyzed. The enzyme involved, coniferyl ferulate feruloyl-CoA monolignol transferase, was then expressed in poplar. The resulting poplar trees showed no difference in growth habit under greenhouse conditions, but their lignin showed improved digestibility. Engineered poplar lignin with readily cleavable ester bonds in the polymer backbone improves wood degradability. Redesigning lignin, the aromatic polymer fortifying plant cell walls, to be more amenable to chemical depolymerization can lower the energy required for industrial processing. We have engineered poplar trees to introduce ester linkages into the lignin polymer backbone by augmenting the monomer pool with monolignol ferulate conjugates. Herein, we describe the isolation of a transferase gene capable of forming these conjugates and its xylem-specific introduction into poplar. Enzyme kinetics, in planta expression, lignin structural analysis, and improved cell wall digestibility after mild alkaline pretreatment demonstrate that these trees produce the monolignol ferulate conjugates, export them to the wall, and use them during lignification. Tailoring plants to use such conjugates during cell wall biosynthesis is a promising way to produce plants that are designed for deconstruction.


Proceedings of the National Academy of Sciences of the United States of America | 2008

RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism

Heather D. Coleman; Ji-Young Park; Ramesh Nair; Clint Chapple; Shawn D. Mansfield

p-Coumaroyl-CoA 3′-hydroxylase (C3′H) is a cytochrome P450-dependent monooxygenase that catalyzes the 3′-hydroxylation of p-coumaroyl shikimate and p-coumaroyl quinate. We used RNA interference to generate transgenic hybrid poplar suppressed in C3′H expression and analyzed them with respect to transcript abundance, cell wall structure and chemical composition, and soluble metabolite levels. RT-PCR expression profiles confirmed the down-regulation of C3′H in a number of lines, which generally correlated very well with reduced total cell wall lignin content. The most strongly repressed line was chosen for further analysis and compared with the wild-type trees. In-depth characterization revealed that along with the significant decrease in total lignin content, a significant shift in lignin monomer composition was observed, favoring the generation of p-hydroxyphenyl units at the expense of guaiacyl units while the proportion of syringyl moieties remained constant. Suppression of C3′H also resulted in the accumulation of substantial pools of 1-O-p-coumaroyl-β-d-glucoside and other phenylpropanoid glycosides, and p-coumaroyl shikimate, providing further insight into the role of C3′H in the lignin biosynthetic pathway. The data presented indicate that when down-regulated, C3′H becomes a rate-limiting step in lignin biosynthesis and further support the involvement of hydroxycinnamic acid shikimate esters in the lignin biosynthetic pathway.


Plant Molecular Biology | 2006

Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.).

Steven Ralph; Ji-Young Park; Jörg Bohlmann; Shawn D. Mansfield

The outer stem tissues of conifers provide a durable constitutive and inducible defense barrier consisting of suberized or lignified periderm, sclereids, a network of terpenoid-filled resin ducts, and phenolic phloem parenchyma cells. Microarray gene expression profiling of Sitka spruce (Picea sitchensis) bark attacked by stem-boring weevils (Pissodes strobi) or through mechanical wounding demonstrated significant accumulation of transcripts resembling dirigent protein (DIR) genes. To investigate this gene family and its spatial and temporal patterns of expression in conifer defense, we isolated cDNAs representing 19 unique DIR and DIR-like genes from Sitka spruce, white spruce (P. glauca), and interior spruce (P. glaucaxa0× engelmannii). Sequence alignments also identified a large number of DIR-like proteins in other plant species, which share several conserved protein motifs with known DIR proteins. Phylogenetic analysis of 72 DIR and DIR-like proteins suggests five distinct subfamilies, DIR-a and four DIR-like subfamilies (DIR-b, DIR-c, DIR-d and DIR-e). Previously characterized members of the DIR-a subfamily direct stereoselective phenolic coupling reactions in the formation of lignans and possibly lignins. The spruce genes identified here are members of the DIR-a and DIR-b subfamilies. Using gene-specific quantitative real-time PCR we measured constitutive expression for six DIR-a genes and three DIR-like genes in different stem tissues, green shoot tips, and roots of Sitka spruce. DIR-like genes revealed ubiquitous high expression in all tissues. In contrast, the six DIR-a genes showed a gradient of transcript abundance in stem tissues with highest levels in the outer cortex and lowest levels in the inner xylem. Gene-specific transcript profiling of six DIR-a genes confirmed rapid and strong accumulation (up to 500-fold) in wound- and weevil-induced stem bark and xylem. These findings suggest a role for spruce DIR genes in constitutive and induced phenolic defense mechanisms against stem-boring insects.


Plant Physiology | 2013

Regulation of miR399f Transcription by AtMYB2 Affects Phosphate Starvation Responses in Arabidopsis

Dongwon Baek; Min Chul Kim; Hyun Jin Chun; S.G. Kang; Hyeong Cheol Park; Gilok Shin; Ji-Young Park; Mingzhe Shen; Hyewon Hong; Woe-Yeon Kim; Doh Hoon Kim; Sang Yeol Lee; Ray A. Bressan; Hans J. Bohnert; Dae-Jin Yun

Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.


Transgenic Research | 2008

Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development

Ji-Young Park; Thomas Canam; Kyu-Young Kang; David D. Ellis; Shawn D. Mansfield

The objective of this study was to manipulate the intracellular pools of sucrose by differentially expressing exogenous sucrose phosphate synthase (SPS) and investigating its role in regulating plant growth and fibre development. Tobacco (Nicotiana tabacum cv. Xanthi) plants were transformed with an arabidopsis SPS gene under the regulation of the ubiquitously expressed tandem repeat of the 35S cauliflower mosaic virus promoter, and subject to growth trials and fibre characterization. It was apparent that over-expression of SPS resulted in substantially elevated concentrations of sink sucrose pools compared to wild-type plants, while source tissue sucrose pools remained the same. All transformed plants had significantly increased stem height, which was ascribed to internode elongation, and greater stem diameters, longer fibers and increased total dry biomass relative to the control plants. Difference in the chemical composition of either the storage or structural carbohydrates of the wild-type and SPS transgenic lines were only minor. The correlation between increased stem sucrose content and plant phenotypes with elevated SPS gene expression confirm a role for sucrose availability in controlling plant growth and fibre elongation.


Tree Physiology | 2009

Sucrose phosphate synthase expression influences poplar phenology

Ji-Young Park; Thomas Canam; Kyu-Young Kang; Faride Unda; Shawn D. Mansfield

The objective of this study was to manipulate the intracellular pools of sucrose, and investigate its role in regulating plant growth, phenology (leaf senescence and bud break) and fibre development. This objective was achieved by differentially expressing an Arabidopsis (Arabidopsis thaliana L. Heynh.) sucrose phosphate synthase (SPS) gene in hybrid poplar (Populus alba L.xPopulus grandidentata Michx.), a model system for tree biology with substantial industrial relevance in the context of short rotation forestry and a target bioenergy crop. Phenotypic differences were evident in the transgenic trees, as both the timing of bud flush and leaf senescence were altered compared to wild-type (WT) trees. Tree height and stem diameter were similar in WT and in the AtSPS transgenic trees, however, there were differences in the length of xylem fibres. Elevated concentrations of intracellular sucrose in both leaf and stem tissue of the transgenic trees are associated with a prolonged onset of senescence and an advancement in bud flush in the following spring. The association among sucrose content, tree phenology and elevated SPS gene expression implicates both enzyme and product in regulating poplar developmental processes.


Transgenic Research | 2010

Altered sucrose metabolism impacts plant biomass production and flower development.

Heather D. Coleman; Leigh Beamish; Anya M. Reid; Ji-Young Park; Shawn D. Mansfield

Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2xa0×xa035S::UGPasexa0×xa0SPS, 4CL::UGPasexa0×xa0SPS, 2xa0×xa035S::SuSyxa0×xa0SPS, 4CL::SuSyxa0×xa0SPS, 2xa0×xa035S::UGPasexa0×xa0SuSyxa0×xa0SPS, and 4CL::UGPasexa0×xa0SuSyxa0×xa0SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.


Tree Physiology | 2010

Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees

So-Young Park; Krystyna Klimaszewska; Ji-Young Park; Shawn D. Mansfield

Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus.


Planta | 2006

Varied growth, biomass and cellulose content in tobacco expressing yeast-derived invertases

Thomas Canam; Ji-Young Park; Ka Yun Yu; Malcolm M. Campbell; David D. Ellis; Shawn D. Mansfield

The effects of the expression of yeast-derived apoplastic (AI) and cytosolic (CI) invertases (EC 3.2.1.26) on biomass and structural carbohydrate accumulation in tobacco (Nicotiana tabacum L. cv. Xanthi) were evaluated. Transgenic tobacco plants expressing AI or CI under the control of either a tandem repeat of the Cauliflower Mosaic Virus 35S promoter (2X35S), or a promoter that drives xylem-localized expression (Petroselinum crispum 4-coumarate:CoA ligase promoter; 4CL) were generated. Yeast-derived invertase transcript levels, invertase protein, enzyme activity, growth parameters as well as both structural and soluble carbohydrates of stem tissue of all transformed lines were quantified. Transgenic tobacco lines expressing invertase under the control of 4CL displayed severe growth retardation with both yeast-derived isogenes. Similarly, several transformed lines expressing either AI or CI regulated by the 2X35S promoter were also shorter than wild-type (WT) plants. Despite the decreases in height, some transformed lines had significant increases in biomass. One line (2X35S::AI-1) had a biomass/height increase of 88% and an increase in stem diameter of over 40%, while a second line (2X35S::CI-5) had a biomass/height increase of 21%. A separate line (2X35S::AI-2) had a 36% increase in cellulose content, while two others (4CL::AI-2 and 4CL::AI-3) displayed significant decreases in cellulose content. The observed phenotypes can be in part explained by the levels of foreign invertase present, subcellular localization and the carbohydrate status of the tissues.


Plant Physiology | 2015

Engineering monolignol p-coumarate conjugates into Poplar and Arabidopsis lignins

Rebecca A. Smith; Eliana Gonzales-Vigil; Steven D. Karlen; Ji-Young Park; Fachuang Lu; Curtis G. Wilkerson; Lacey Samuels; John Ralph; Shawn D. Mansfield

Novel monolignol p-coumarate conjugates in eudicot lignin result from the introduction of a monocot acyltransferase. Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production.

Collaboration


Dive into the Ji-Young Park's collaboration.

Top Co-Authors

Avatar

Shawn D. Mansfield

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Thomas Canam

Eastern Illinois University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faride Unda

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Ellis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Ralph

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Steven D. Karlen

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Steven Ralph

University of North Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge