Ji Zang
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ji Zang.
ACS Applied Materials & Interfaces | 2012
Dun-Yen Kang; Ho Ming Tong; Ji Zang; Rudra Prosad Choudhury; David S. Sholl; Haskell W. Beckham; Christopher W. Jones; Sankar Nair
The fabrication, detailed characterization, and molecular transport properties of nanocomposite membranes containing high fractions (up to 40 vol %) of individually-dispersed aluminosilicate single-walled nanotubes (SWNTs) in poly(vinyl alcohol) (PVA), are reported. The microstructure, SWNT dispersion, SWNT dimensions, and intertubular distances within the composite membranes are characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), XRD rocking curve analysis, small-angle X-ray scattering (SAXS), and solid-state NMR. PVA/SWNT nanocomposite membranes prepared from SWNT gels allow uniform dispersion of individual SWNTs in the PVA matrix with a random distribution of orientations. SAXS analysis reveals the length (∼500 nm) and outer diameter (~2.2 nm) of the dispersed SWNTs. Electron microscopy indicates good adhesion between the SWNTs and the PVA matrix without the occurrence of defects such as voids and pinholes. The transport properties of the PVA/SWNT membranes are investigated experimentally by ethanol/water mixture pervaporation measurements, computationally by grand canonical Monte Carlo and molecular dynamics, and by a macroscopic transport model for anisotropic permeation through nanotube-polymer composite membranes. The nanocomposite membranes substantially enhance the water throughput with increasing SWNT volume fraction, which leads to a moderate reduction of the water/ethanol selectivity. The model is parameterized purely from molecular simulation data with no fitted parameters, and shows reasonably good agreement with the experimental water permeability data.
ACS Nano | 2010
Dun-Yen Kang; Ji Zang; Elizabeth R. Wright; Arthur L. McCanna; Christopher W. Jones; Sankar Nair
Single-walled metal oxide (aluminosilicate) nanotubes are excellent candidates for addressing the long-standing issue of functionalizing nanotube interiors, due to their high surface reactivity and controllable dimensions. However, functionalization of the nanotube interior is impeded by its high surface silanol density (9.1 -OH/nm(2)) and resulting hydrophilicity. Controlled dehydration of the nanotubes is critical for the success of functionalization efforts. We employ a range of solid-state characterization tools to elucidate dehydration and dehydroxylation phenomena in the nanotubes as a function of heat treatment up to 450 degrees C. Vibrational spectroscopy (Fourier transform infrared, FT-IR), thermogravimetric analysis-mass spectrometry (TGA-MS), nitrogen physisorption, solid-state NMR, and X-ray diffraction (XRD) reveal that a completely dehydrated condition is achieved at 250 degrees C under vacuum and that the maximum pore volume is achieved at 300 degrees C under vacuum due to partial dehydroxylation of the dehydrated nanotube. Beyond 300 degrees C, further dehydroxylation partially disorders the nanotube wall structure. However, a unique rehydroxylation mechanism can partially reverse these structural changes upon re-exposure to water vapor. Finally, detailed XRD simulations and experiments allow further insight into the nanotube packing, the dimensions, and the dependence of nanotube XRD patterns on the water content.
ACS Nano | 2009
Ji Zang; Suchitra Konduri; Sankar Nair; David S. Sholl
Understanding transport phenomena of fluids through nanotubes (NTs) is of great interest in order to enable potential application of NTs as separation devices, encapsulation media for molecule storage and delivery, and sensors. Single-walled metal oxide NTs are interesting materials because they present a well-defined solid-state structure, precisely tunable diameter and length, as well as a hydrophilic and functionalizable interior for tuning transport and adsorption selectivity. Here, we study the transport properties of hydrogen-bonding liquids (water, methanol, and ethanol) through a single-walled aluminosilicate NT to investigate the influence of liquid-surface and liquid-liquid interactions and the effects of competitive transport of different chemical species using molecular dynamics (MD) simulations. The self-diffusivities (D(s)) for all the three species decrease with increasing loading and are comparable to bulk liquid diffusivities at low molecular loadings. We show that the hydrogen-bond network associated with water makes its diffusion behavior different from methanol and ethanol. Mixtures of water and methanol show segregation in the NT, with water located closer to the tube wall and the alcohol molecules localized near the center of the NT. D(s) values of water in an analogous aluminogermanate NT are larger than those in the aluminosilicate NT due to a larger pore diameter.
Nature Communications | 2014
Dun-Yen Kang; Nicholas A. Brunelli; G. Ipek Yucelen; Anandram Venkatasubramanian; Ji Zang; Johannes Leisen; Peter J. Hesketh; Christopher W. Jones; Sankar Nair
Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with covalently bonded primary amine moieties on their inner wall, synthesized through a one-step approach. Conclusive molecular-level structural information on the amine-functionalized nanotubes is obtained through multiple solid-state techniques. The amine-functionalized nanotubes maintain a high carbon dioxide adsorption capacity while significantly suppressing the adsorption of methane and nitrogen, thereby leading to a large enhancement in adsorption selectivity over unfunctionalized nanotubes (up to four-fold for carbon dioxide/methane and ten-fold for carbon dioxide/nitrogen). The successful synthesis of single-walled nanotubes with functional, covalently-bound organic moieties may open up possibilities for new nanotube-based applications that are currently inaccessible to carbon nanotubes and other related materials.
Journal of Chemical Physics | 2011
Ji Zang; Sankar Nair; David S. Sholl
Osmotic framework adsorbed solution theory is a useful molecular simulation method to predict the evolution of structural transitions upon adsorption of guest molecules in flexible nanoporous solids. One challenge with previous uses of this approach has been the estimation of free energy differences between the solid phases of interest in the absence of adsorbed molecules. Here we demonstrate that these free energy differences can be calculated without reference to experimental data via the vibrational density of states of each phase, a quantity that can be obtained from molecular dynamics simulations. We show the applicability of this method through case studies of the swelling behaviors of two representative systems in which swelling upon adsorption of water is of importance: single-walled aluminosilicate nanotube bundles and cesium montmorillonite. The resulting predictions show that the aluminosilicate nanotube bundles swell significantly with increasing interstitial adsorption and that the layer spacing of cesium montmorillonite expands up to about 12.5 Å, giving good agreement with experiments. The method is applicable to a wide range of flexible nanoporous materials, such as zeolites, metal-organic frameworks, and layered oxide materials, when candidate structures can be defined and a force field to describe the material is available.
Journal of Physical Chemistry C | 2012
Himanshu Jasuja; Ji Zang; David S. Sholl; Krista S. Walton
Journal of Physical Chemistry C | 2012
Hanjun Fang; Preeti Kamakoti; Ji Zang; Stephen M. Cundy; Charanjit S. Paur; Peter I. Ravikovitch; David S. Sholl
Journal of Physical Chemistry C | 2011
Dun-Yen Kang; Ji Zang; Christopher W. Jones; Sankar Nair
Journal of Physical Chemistry Letters | 2010
Ji Zang; Shaji Chempath; Suchitra Konduri; Sankar Nair; David S. Sholl
Journal of Physical Chemistry C | 2013
Ji Zang; Sankar Nair; David S. Sholl