Jia-an Zhang
Nanjing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jia-an Zhang.
Mediators of Inflammation | 2013
Bing-rong Zhou; Jia-an Zhang; Qian Zhang; Felicia Permatasari; Yang Xu; Di Wu; Zhiqiang Yin; Dan Luo
To investigate whether palmitic acid can be responsible for the induction of inflammatory processes, HaCaT keratinocytes were treated with palmitic acid at pathophysiologically relevant concentrations. Secretion levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), NF-κB nuclear translocation, NF-κB activation, Stat3 phosphorylation, and peroxisome proliferator-activated receptor alpha (PPARα) mRNA and protein levels, as well as the cell proliferation ability were measured at the end of the treatment and after 24 hours of recovery. Pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF-κB) and goat anti-human IL-6 polyclonal neutralizing antibody were used to inhibit NF-κB activation and IL-6 production, respectively. Our results showed that palmitic acid induced an upregulation of IL-6, TNF-α, IL-1β secretions, accompanied by NF-κB nuclear translocation and activation. Moreover, the effect of palmitic acid was accompanied by PPARα activation and Stat3 phosphorylation. Palmitic acid-induced IL-6, TNF-α, IL-1β productions were attenuated by NF-κB inhibitor PDTC. Palmitic acid was administered in amounts able to elicit significant hyperproliferation and can be attenuated by IL-6 blockage. These data demonstrate for the first time that palmitic acid can stimulate IL-6, TNF-α, IL-1β productions in HaCaT keratinocytes and cell proliferation, thereby potentially contributing to acne inflammation and pilosebaceous duct hyperkeratinization.
PLOS ONE | 2014
Jia-an Zhang; Zhi Yin; Li-wen Ma; Zhiqiang Yin; Yan-yan Hu; Yang Xu; Di Wu; Felicia Permatasari; Dan Luo; Bing-rong Zhou
Objective This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. Methods We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we analyzed epidermal thickness, collagen expression and the mRNA and protein levels of type I collagen, type III collagen, interstitial collagenase (MMP-1 and MMP-3) in UVB exposed dorsal mice skin. The aging condition in human dermal fibroblasts was determined by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The G1 phase cell growth arrest was analyzed by flow cytometry. The senescence-related protein levels of p16INK-4a, p21WAF-1, and p53 and protein levels of phosphorylated histone H2AX were estimated by Western blotting. Results Topically application of baicalin treatment reduced UVB-induced epidermal thickening of mouse skin and also result in an increase in the production of collagen I and III, and a decrease in the expression of MMP-1 and MMP-3. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with baicalin demonstrated a decrease in the expression of SA-β-gal, a increase in the cell viability, a decrease in the G1 phase cell proportion, a downregulation in the level of senescence-associated and γ-H2AX proteins. However, Baicalin had no difference in the normal fibroblasts without UVB irradiation and long-term Baicalin incubation of UVB-SIPS fibroblasts gave no effects on the cell proliferation. Conclusions Taken together, these results suggest that baicalin significantly antagonizes photoaging induced by UVB in vivo and in vitro, indicating the potential of baicalin application for anti-photoaging treatment.
Journal of Photochemistry and Photobiology B-biology | 2014
Felicia Permatasari; Yan-yan Hu; Jia-an Zhang; Bing-rong Zhou; Dan Luo
This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question.
International Journal of Biological Sciences | 2013
Bing-rong Zhou; Xian‐fei Guo; Jia-an Zhang; Yang Xu; Wei Li; Di Wu; Zhiqiang Yin; Felicia Permatasari; Dan Luo
Previous studies showed that several miRNAs can regulate pathways involved in UVB-induced premature senescence and response to ultraviolet irradiation. It has also been reported that miR-34c-5p may be involved in senescence-related mechanisms. We propose that miR-34c-5p may play a crucial role in senescence of normal human primary dermal fibroblasts. Here, we explored the roles of miR-34c-5p in UVB-induced premature senescence on dermal fibroblasts. MiR-34c-5p expression was increased in dermal fibroblasts after repeated subcytotoxic UVB treatments. Underexpression of miR-34c-5p in dermal fibroblasts led to a marked delay of many senescent phenotypes induced by repeated UVB treatments. Furthermore, underexpression of miR-34c-5p in dermal fibroblasts can antagonize the alteration of G1-arrested fibroblasts. Moreover, E2F3, which can inactivate p53 pathway and play a role in cell cycle progression, is a down-stream target of miR-34c-5p. Forced down-expression of miR-34c-5p decreased the expression of UVB-SIPS induced P21 and P53 at both mRNA and protein levels. Our data demonstrated that down-regulation of miR-34c-5p can protect human primary dermal fibroblasts from UVB-induced premature senescence via regulations of some senescence-related molecules.
Oncotarget | 2016
Jia-an Zhang; Bing-rong Zhou; Yang Xu; Xu Chen; Juan Liu; Maya Valeska Gozali; Di Wu; Zhiqiang Yin; Dan Luo
Autophagy is a cellular catabolic mechanism that is activated in response to stress conditions, including ultraviolet (UV) irradiation, starvation, and misfolded protein accumulation. Abnormalities in autophagy are associated with several pathologies, including aging and cancer. Furthermore, recent studies have demonstrated that microRNAs (miRNAs) are potent modulators of the autophagy pathway. As a result, the current study aims to elucidate the role of the autophagy-related miRNA miR-23ain the process of photoaging. Experiments demonstrated that the antagomir-mediated inactivation of miR-23a resulted in the stimulation of PUVA- and UVB-depressed autophagy flux and protected human fibroblasts from premature senescence. Furthermore, AMBRA1 was identified as a miR-23a target. AMBRA1 cellular levels increased following the introduction of miR-23a antagomirs. And a bioinformatics analysis revealed that the AMBRA1 3′ UTR contains functional miR-23a responsive sequences. Finally, it was also demonstrated that both AMBRA1 overexpression and Rapamycin treatment were both able to rescue fibroblasts from PUVA and UVB irradiation-induced autophagy inhibition, but that these effects could also be mitigated by miR-23a overexpression. Therefore, this study concludes that miR-23a-regulated autophagy is a novel and important regulator of ultraviolet-induced premature senescence and AMBRA1 is a rate-limiting miRNA target in this pathway.
Scientific Reports | 2016
Maya Valeska Gozali; Fei Yi; Jia-an Zhang; Juan Liu; Hong-jin Wu; Yang Xu; Dan Luo; Bing-rong Zhou
5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is known to be effective in several skin diseases such as acne, actinic keratoses, condyloma acuminata. However, some detailed mechanisms of ALA-PDT to treat these skin diseases still remain elusive. In this study, we aimed to investigate mechanism of ALA-PDT in in-vitro and in-vivo models. For in vitro, we use human keratinocyte cell line (HaCaT) cells. CCK-8 was used to detect cell proliferation activity, immunofluorescence and western blotting method to detect the content of keratin (K)1, K6, K16, protein kinase C (PKC), fibroblast growth factor receptor-2b (FGFR2b) protein, ELISA and RT-PCR to detect expression of interleukin (IL) 1α in the cell supernatant, and detect reactive oxygen species (ROS). For in vivo, we use 20 rabbits to induce hyperkeratosis acne model in their ear. Dermatoscope was used to see follicle hyperkeratosis and skin biopsy to analyze histology and immunohistochemical of PKC, FGFR2b, K1, K6 and K16. Results from this study suggest that ROS stimulated by ALA-PDT lead to inhibition of FGFR2b pathway in PKC downstream to cause reduction of IL1α expression, and eventually, keratinocytes differentiation and proliferation. Our data thus reveal a treatment mechanism of ALA-PDT underlying hyperkeratosis related dermatoses.
Oxidative Medicine and Cellular Longevity | 2016
Bing-rong Zhou; Li-wen Ma; Juan Liu; Jia-an Zhang; Yang Xu; Di Wu; Felicia Permatasari; Dan Luo
Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.
BioMed Research International | 2016
Jie Zhu; Xi ji; Min Li; Xiao-e Chen; Juan Liu; Jia-an Zhang; Dan Luo; Bing-rong Zhou
Objective. We evaluated synergistic efficacy and safety of combined topical application of Botulinum Toxin Type A (BTX-A) with fractional CO2 laser for facial rejuvenation. Methods. Twenty female subjects were included for this split-face comparative study. One side of each subjects cheek was treated with fractional CO2 plus saline solution, and the other side was treated with fractional CO2 laser plus topical application of BTX-A. Patients received one session of treatment and evaluations were done at baseline, one, four, and twelve weeks after treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), and the erythema and melanin index. Results. BTX-A combined with fractional CO2 laser sides showed higher physicians global assessment score, subject satisfaction score, roughness, skin hydration, and skin elasticity compared to that of fractional CO2 plus saline solution side at 12 weeks after treatment. TEWL and erythema and melanin index showed no significant differences between two sides at baseline, one, four, and twelve weeks after treatment. Conclusion. Topical application of BTX-A could enhance the rejuvenation effect of fractional CO2 laser.
Dermatologic Therapy | 2017
Jie Zhu; Xi ji; Yang Xu; Juan Liu; Ying-ying Miao; Jia-an Zhang; Dan Luo; Bing-rong Zhou
The aim of this study is to evaluate the efficacy for effectiveness of type A botulinum toxin intradermal injection for facial rejuvenation. Forty female subjects were randomly divided into two groups: BoNTA group and control group. In BoNTA group, each subjects facial skin was treated with intradermal injection of BoNTA, and subjects of the control group were treated with intradermal saline solution injection. Subjects receiving one session of treatment and evaluations were conducted at baseline, four weeks, and twelve weeks after treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), erythema, and melanin index. BoNTA group showed higher physicians global assessment score, subject satisfaction score, roughness, skin hydration, skin elasticity, and lower TEWL compared to that of control group at 12 weeks post‐treatment. No significant difference was found among erythema and melanin index at baseline, four, and twelve weeks after treatment among the two major groups. In conclusion, intradermal BoNTA injection can be considered as an effective method for facial rejuvenation.
Drug Design Development and Therapy | 2014
Zhi‑Qiang Yin; JiaLi Xu; Bing-rong Zhou; Di Wu; Yang Xu; Jia-an Zhang; Dan Luo
Background Topical pimecrolimus has been shown to reverse epidermal CD1a+ Langerhans cell reduction induced by high-dose ultraviolet (UV)B irradiation, but the mechanism is still unclear. This study aimed to investigate the possible mechanism of the effect of pimecrolimus on high-dose UVB-irradiated epidermal Langerhans cells. Methods Forty human foreskin tissues were divided into four groups: control; pimecrolimus-only; UVB-only; and UVB + pimecrolimus. All tissues were cultured, and each tissue was cut into four pieces, corresponding to four time points (0 hours, 18 hours, 24 hours, and 48 hours). We collected the tissues and culture medium at each time point. The percentage of CD1a+ cells in medium was detected by flow cytometry. The tissues were detected for messenger (m)RNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and E-cadherin, by reverse-transcription polymerase chain reaction (PCR) and Western blot. Results At 18 hours, 24 hours, and 48 hours, the CD1a+ cells in the culture medium of the UVB-only group and the UVB + pimecrolimus group were significantly more than in the control group, while the CD1a+ cells of the UVB + pimecrolimus group was less than of the UVB-only group. For both the UVB-only group and UVB + pimecrolimus group, TNF-α expression (by both reverse-transcription PCR and Western blot) of the tissues was clearly higher and E-cadherin expression was significantly lower compared with the control group, at 18 hours, 24 hours, and 48 hours. For the UVB + pimecrolimus group, TNF-α was clearly lower and E-cadherin was significantly higher compared with the UVB-only group. Conclusion Topical pimecrolimus inhibited epidermal Langerhans cell migration induced by high-dose UVB irradiation, via regulation of TNF-α and E-cadherin.