Jia Bin Lu
Guangdong University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jia Bin Lu.
Materials Science Forum | 2013
Zhen Wei Bai; Qiu Sheng Yan; Jia Bin Lu
As a new multifunctional material, strontium titanate (SrTiO3) ceramic has a wide application in grain boundary layer capacitor (GBLC) with the microstructure characteristics of semi-conductive crystalline grain and insulated boundary. An ultra-precision nanofishing technique is developed to lap and polish the brittle and thin SrTiO3 substrate with the cluster MR-effect plate where the abrasives are constrained by the cluster MR-effect chains, under the influence of a magnetic field, the carbonyl iron particles (CIPs) and non-magnetic abrasive particles remove material from the surface of workpiece being machined in this paper. Mahr XT20 roughmeter, Keyence VHX-600 and Olympus S4000 microscopes are used to investigate the characteristic of machined surface and the mechanism of material removal. An ultra-smooth planarization surface of SrTiO3 substrate with surface roughness Ra 3.8 nm (Mahr), RMS 0.973 nm (Veeco interferometer) is obtained under a high efficiency. It is found that the pore structures of the sintered substrate would weak the machinability of SrTiO3 and influence the further improvement of surface quality.
Advanced Materials Research | 2010
Qiu Sheng Yan; Jie Wen Yan; Jia Bin Lu; Wei Qiang Gao
A new planarization polishing method based on the cluster magnetorheological (MR) effect is presented to polish optical glass in this paper. Some process experiments were conducted to reveal the influence of the content of carbonyl iron and the abrasive materials in the MR fluid on the machining effect, and the machining characteristic of polished surface was studied. The results indicate that the surface roughness of the polished workpiece can be reduced rapidly when the strong magnetic field is applied, and ultra smooth surface with Ra 1.4 nm can be achieved while the CeO2 abrasives are used in the MR fluid. The content of carbonyl iron obviously influences the machining effect of this planarization polishing method based on cluster MR-effect. With the increase of the content of carbonyl iron in the MR fluid, the material removal rate improves and the surface roughness reduces rapidly. However, the difference of abrasive material results in various machining effects. As for the K9 optical glass, the CeO2 abrasive is better polishing abrasive than the SiC abrasive in the planarization polishing technique based on the cluster MR-effect.
Advanced Materials Research | 2013
Jiang Ting Zhu; Jia Bin Lu; Ji Sheng Pan; Qiu Sheng Yan; Xi Peng Xu
The growth of epitaxial layer of SiC wafer requires the surface of SiC substrate to reach an atomic scale accuracy. To solve the problems of low machining efficiency and low surface accuracy in the polishing process of SiC wafer, a novel ultra-precision machining method based on the synergistic effect of chemical reaction and flexible mechanical removal of the magnetorheological (MR) effect, the MR-chemical mechanical polishing (MRCMP) is proposed. In this technique, magnetic particles, abrasives and chemical additives are used as MR-chemical polishing fluid to form a cluster MR-effect flexible polishing platen under an applied magnetic field, and it is expected to realize an atomic scale ultra-smooth surface planarization with good controllability and high material removal rate by using the flexible polishing platen. Polishing experimental results of C surface of 6H-SiC crystal substrate indicate that an atomic scale zero-defect surface can be obtained. The surface roughness of C surface of SiC wafer decreased from 50.86nm to 0.42nm and the material removal rate was 98nm/min when SiC wafer was polished for 60 minutes.
Materials Science Forum | 2011
Jie Wen Yan; Qiu Sheng Yan; Jia Bin Lu; Ling Ye Kong; Zhan Cheng Wu
A new planarization grinding method based on the cluster magnetorheological (MR) effect is presented to grind optical glass in this paper. Some process experiments were conducted to reveal the influence of the speed of the grinding disc and grinding time and grinding pressure during the machining process. The results indicate that the speed of the grinding disc influences definitively on grinding effect of this planarization grinding method based on the cluster MR-effect. When the speed of the grinding disc is 110r/min, better machining effect can be achieved. Furthermore, the influence of the grinding time on machining effect is obviously, and the proper machining time is 6mins. However, under the experiment condition in this paper, the influence of grinding pressure on machining effect is unobvious.
Key Engineering Materials | 2011
Min Li; Qiu Sheng Yan; Jia Bin Lu; Jing Fu Chai
Method of compound machining is used to process single crystal silicon and SrTiO3 ceramic substrates, and the factors on effects of compound machining are studied such as magnetic field intensity, processing time, rotating speed of lapping plate and lapping pressure. The results show that the roughness of work pieces processed by compound machining are smaller than that by lapping based on cluster MR effect and polyurethane pad polishing process, while the material removal rate is higher than polyurethane pad polishing process, therefore, compound machining shows its synergistic effect between lapping based on cluster MR effect and polyurethane pad polishing process. The type and properties of workpiece material, and machining parameters both have a significant impact on the roughness and material removal rate of compound machining process of polyurethane polishing pad and cluster abrasive brush based on MR effect.
Materials Science Forum | 2016
Run Chen; Jia Bin Lu; Qiu Sheng Yan; Xiao Lan Xiao; De Yuan Li
The polishing experiments of anodic oxide film of aluminum were performed to research the influence of polishing parameters on the surface roughness and material removal rate in the cluster magnetorheological finishing (MRF). Experimental results demonstrate that a mirror effect can be reached when the anodic oxide film of aluminum is polished by the Cluster MRF. The roughness of the workpiece surface after polishing for 15 min is decreased from Ra 0.575μm to Ra 4.13nm and the material removal rate is 0.653mg/min. With the extension of the polishing time, the surface roughness rapidly declines at first and then slowly decreases. When the machining time is more than 15min, the anodic oxide film of aluminum is easily worn out, resulting in a sharp increase in the surface roughness. The machining gap between the workpiece and the polishing plate influences the polishing effect of anodic oxide film of aluminum. With the increase of the machining gap, the material removal rate decreases and the surface roughness increases. A good surface quality can be got at the machining gap of 1.1mm. The type and size of abrasive particles will directly affect the polishing effect of anodic oxide film of aluminum, and when using CeO2 abrasive with the particle size of W3, a higher material removal rate and a smaller surface roughness can be obtained.
Materials Science Forum | 2016
Hua Zhuo Liang; Qiu Sheng Yan; Jia Bin Lu; Wei Qiang Gao
Experiment was performed to examine the plane polishing of SiC single crystal wafer by using the chemical magnetorheological finishing (CMRF) technique. The influence of some process parameters such as the concentration of diamond abrasive particles, the concentration of carbonyl iron powder and the machining gap in CMRF were studied comparing with the magnetorheological finishing (MRF) method. The results show that the surface roughness of polished SiC single crystal by the CMRF is slightly lower than that by the MRF. Polishing liquid with different components and processing parameters affects the coupling effect of mechanical removal and chemical removal in CMRF, and a better coupling effect can produce a better surface quality in CMRP. In the MRF, the surface roughness of SiC single crystal is lower for a higher concentration of carbonyl iron powder (CIP). However, in the CMRF, the CIP’s concentration may change the contact state between the catalyst and SiC, and the CIP’s concentration of about 20% can produce a better surface roughness of SiC. The machining gap between the polishing disk and the workpiece surface determines the processing effect, and the machining gap of 1.0 mm is suitable for the polishing of SiC in the MRF and CMRF.
Advanced Materials Research | 2013
Wei Li; Qiu Sheng Yan; Jia Bin Lu; Ji Sheng Pan
In order to remove the cutting marks on the cutting surface of 6H-SiC single crystal wafer, experiments were conducted to investigate the effect of the abrasive characteristics (types, grain size, concentration and mixed abrasives) on the lapping performance of 6H-SiC single crystal wafer, then the removal mechanism of the abrasive grains in the lapping process was studied. Results indicate that the abrasives with larger grain size and higher hardness can result in a higher material removal rate while the abrasives with smaller grain size and lower hardness can achieve a lower surface roughness value. When the concentration of the abrasives is 7.69 wt%, a good lapping effect was obtained. Lower surface roughness value Ra can be obtained with a high material removal rate by using certain proportion mixed abrasives. Selecting appropriate abrasives can obtain a high surface quality of 6H-SiC wafer with a high efficiency.
Key Engineering Materials | 2012
Jie Wen Yan; Qiu Sheng Yan; Jia Bin Lu; Wei Qiang Gao; Zhi Ying Huang
A new planarization polishing method, based on the cluster magnetorheological (MR) effect and using MR fluid to form the flexible polishing pad, is presented in this paper to polish optical glass. To explore the machining characteristic of the viscid and flexible polishing pad based on the cluster MR-effect, some process experiments were conducted to reveal the influence of the machining gap, the speed of the polishing disc and the polishing time on the machining effect. The results indicate that the viscid and flexible polishing pad based on the cluster MR-effect under a strong magnetic field can reduce surface roughness effectively. When the strength of the magnetic field is 2000Gs, and the content of the carbonyl iron is 12%, the surface roughness can be reduced rapidly from the original Ra0.27μm to Ra1.4nm based on the cluster MR-effect.
Advanced Materials Research | 2011
Qiu Sheng Yan; Jie Wen Yan; Jia Bin Lu; Wei Qiang Gao; Min Li
A new planarization grinding method based on the cluster magnetorheological (MR) effect is presented to grind optical glass in this paper. Some process experiments were conducted to reveal the influence of the species and granularity and content of the abrasive materials in the MR fluid on the machining effect, furthermore, the machining characteristic of grinded surface was studied. The results indicate that the abrasive influences definitively on machining effect of this planarization grinding method based on the cluster MR-effect. Under the certain experiment condition, with the content of the abrasive 10% and grain size 800# of SiC, best machining effect can be achieved. The difference species of abrasive results in various machining effects. As for the removal rate of K9 optical glass: abrasive CeO2 is the best, the Al2O3 is the second and the SiC is the worst. While the surface roughness: abrasive SiC is the lowest,the Al2O3 is the second and CeO2 is the highest.