Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia De Lin is active.

Publication


Featured researches published by Jia De Lin.


Optics Express | 2011

Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold

Chia Rong Lee; Jia De Lin; Bo Yuang Huang; Shih-Hung Lin; Ting Shan Mo; Shuan Yu Huang; Chie-Tong Kuo; Hui Chen Yeh

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.


Optics Express | 2010

All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye

Chia Rong Lee; Jia De Lin; Bo Yuang Huang; Ting Shan Mo; Shuan Yu Huang

This study investigates, for the first time, an all-optically controllable random laser based on a dye-doped liquid crystal (DDLC) cell added with a photoisomerizable dye. Experimental results indicate that the lasing intensity of this random laser can be all-optically controlled to decrease and increase sequentially with a two-step exposure of one UV and then one green beam. All-optically reversible controllability of the random lasing emission is attributed to the isothermal nematic(N)-->isotropic(I) and I-->N phase transitions for LCs due to the UV-beam-induced trans-->cis and green-beam-induced cis-->trans back isomerizations of the photoisomerizable dye, respectively. The former and the latter can decrease and increase the spatial fluctuations of the order and thus of the dielectric tensor of LCs, respectively, subsequently increasing and decreasing the diffusion constant (or transport mean free path), respectively, and thus decaying and rising the scattering strength for the fluorescence photons in their recurrent multi-scattering process, respectively. The consequent decrease and increase of the lasing intensity for the random laser and thus the rise and descent of its energy threshold are generated, respectively.


Optics Express | 2013

Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant

Jia De Lin; Meng Hung Hsieh; Guan Jhong Wei; Ting Shan Mo; Shuan Yu Huang; Chia Rong Lee

This paper presents an optically wavelength-tunable and intensity-switchable dye-doped cholesteric liquid crystal (DDCLC) spherical microlaser with an azo-chiral dopant. Experimental results present that two functions of optical control - tunability of lasing wavelength and switchability of lasing intensity - can be obtained for this spherical microlaser at low and high intensity regimes of non-polarized UV irradiation, respectively. If the DDCLC microdroplet is subjected to weak UV irradiation, azo-chiral molecules may transform to the bent cis state at a low concentration rate. The effect can slightly decrease the local order of LCs and thus the helical twisting power of the CLC in the microdroplet. As a result, the CLC pitch may become slightly elongated, which will cause the gradual red-shift of both omnidirectional PBG and lasing emission of the DDCLC spherical microdroplet. In contrast, when the microdroplet is subjected to strong UV irradiation, numerous azo-chiral molecules may simultaneously change to bent cis-isomers to seriously disarrange the helical texture of the CLC, which will quickly deform the PBG and deactivate the lasing emission of the microdroplet. Prolonged irradiation of a blue beam after strong UV irradiation may cause the cis azo-chiral molecules quickly convert back rod-like trans-isomers, which may then regenerate the CLC Bragg onion and PBG structures and reactivate the lasing emission of the microdroplet. Optical control of the DDCLC spherical microlaser is realized on a scale of seconds and minutes when UV irradiation is strong and weak, respectively. The 3D DDCLC spherical microlaser is a highly promising controllable 3D micro-light source or microlaser (e.g., all-optical 3D single photon microlaser) for applications of 3D all-optical integrated photonics, laser displays, and biomedical imaging and therapy, and as a 3D UV microdosagemeter or microsensor.


Journal of Materials Chemistry C | 2014

An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser

Lin Jer Chen; Jia De Lin; Chia Rong Lee

This investigation is the first report of an optically stable and tunable laser using a quantum-dot (QD) embedded cholesteric liquid crystal (QD-CLC) microresonator with an added chiral-azobenzene moiety. The QD nanocrystal, CLC, and chiral-azobenzene play key roles in the highly stable fluorescence nano-emitter, microresonator, and photo-tuner in the photonic bandgap (PBG) of the CLC and associated lasing output, respectively. Experimental results show that both the PBG and lasing emission of the QD-CLC composite sample can be reversibly tuned under successive irradiation with UV and blue beams. The all-optical tunability of the laser is attributed to the successive elongation and shrinkage of the CLC pitch induced by UV- and blue beam-irradiation induced trans–cis and cis–trans back isomerizations of chiral-azobenzene, respectively. In addition, this composite laser has a high damage threshold (>85 μJ per pulse), and thus shows a uniquely high optical stability. This work has successfully opened up an opportunity for developing QD coherent light sources or lasers with good optical stability and tunability (e.g., optically stable and tunable single photon lasers).


Optical Materials Express | 2015

Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell

Chia Rong Lee; Shih-Hung Lin; Jin Wei Guo; Jia De Lin; Hong Lin Lin; Yang Chen Zheng; Chia Lien Ma; Chi Ting Horng; Han Ying Sun; Shuan Yu Huang

This paper reports for the first time an electrically and thermally controllable nanoparticle (NP) random laser in a well-aligned dye-doped liquid crystal (DDLC) cell. Experimental results show that the random lasing emission is attributed to the amplification of the fluorescence via the multiple scattering of the randomly distributed NPs in the diffusion rout of the well-aligned DDLC cell. The random laser can be electrically and thermally controlled by varying the applied voltage and cell temperature, respectively. As the applied voltage is increased, the orientational change of the LCs from homogeneous to homeotropic texture decreases the dye absorption and thus the spontaneous fluorescence emission, resulting in the decrease of the random lasing emission. The random lasing intensity decreases with increasing temperature at the nematic phase and dramatically increases after the nematic→isotropic (N→I) phase transition. The result in the former stage is attributed to the decreases in the absorption and thus in the spontaneous fluorescence emission for the laser dyes because of the decrease in the order of the laser dyes with increasing temperature at the nematic phase. The result in the latter stage results from the significant decrease of the loss because of the disappearance for the strong leakage of the scattering fluorescence light through the boundaries of the LCs and the glass substrates after the N→I phase transition. Moreover, the anisotropy of the random lasing is crucially determined by two factors: the anisotropies in the spontaneous emission and the leakage of the scattering fluorescence light.


Optics Express | 2014

Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal

Jia De Lin; Yu Meng Lin; Ting Shan Mo; Chia Rong Lee

This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis → trans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm(2) (2.12 mJ/cm(2)), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.


Optics Express | 2015

Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures

Lifeng Chen; Mike P. C. Taverne; Xu Zheng; Jia De Lin; Ruth Oulton; Martin Lopez-Garcia; Y.-L. D. Ho; John Rarity

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps for this structure. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.


Optics Express | 2010

All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye

Huai Pei Tong; Yu Ren Li; Jia De Lin; Chia Rong Lee

This work demonstrates, for the first time, an all-optically controllable distributed feedback (DFB) laser based on a dye-doped holographic polymer-dispersed liquid crystal (DDHPDLC) grating with a photoisomerizable dye. Intensity of the lasing emission can be reduced and increased by raising the irradiation intensity of one CW circularly-polarized green beam and the irradiation time of one CW circularly-polarized red beam, respectively. The all-optical controllability of the lasing emission is owing to the green-beam-induced isothermal nematic-->isotropic and red-beam-induced isothermal isotropic-->nematic phase transitions of the LCs via trans-->cis and cis-->trans back isomerizations of the azo-dye, respectively, in the LC-droplet-rich regions of the grating. The former (latter) mechanism can reduce (increase) the index modulation and thereby the coupling strength in the DFB grating, resulting in the decay (rise) of the lasing emission. Thermal effect is excluded from possible mechanisms causing such an optical controllability of the lasing emission.


Optics Letters | 2011

Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer.

Hui-Chen Yeh; Yi-Chieh Kuo; Shih-Hung Lin; Jia De Lin; Ting-Shan Mo; S.-Y. Huang

This study demonstrates a tunable Fresnel lens in an azo-dye-doped liquid crystal (ADDLC) film using an interference technique. One Fresnel-patterned green beam using a Sagnac interferometer irradiated the UV-illuminated ADDLC cell, yielding a concentric zone plate distribution with homeotropic and isotropic structures in bright and dark regions of the green interference pattern. The proposed Fresnel lens is polarization independent, focus tunable, and the focusing efficiency of the device can be optically controlled.


Optics Express | 2011

All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber

Chia Rong Lee; Jia De Lin; Yan Jhen Huang; Shih Chan Huang; Shih-Hung Lin; Chin Ping Yu

A novel demonstration of an all-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber (DDLCIPCF) is presented. Overall spectral transmittance of the DDLCIPCF can decrease and then increase with a concomitant red-shift of the spectrum curve with increasing irradiation time of one UV beam. Continuing irradiation of one green beam following UV illumination on the DDLCIPCF can cause the transmission spectrum to recover completely. The reversible all-optical controllability of the photonic band structure of the fiber is attributable to the isothermal planar nematic (PN)→scattering (S)→isotropic (I) and I→S→PN state transitions of the LCs via the UV-beam-induced trans→cis and green-beam-induced cis→trans back isomerizations of the azo-dye, respectively, in the cladding of the DDLCIPCF. The photoinduced appearance of the S state and the variation of the index modulation between the core and the cladding of the fiber result in the variation of overall spectral transmittance and the shift of transmission spectrum, respectively.

Collaboration


Dive into the Jia De Lin's collaboration.

Top Co-Authors

Avatar

Chia Rong Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Shuan Yu Huang

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shih-Hung Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Lin Jer Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Hong Lin Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Hui Chen Yeh

National Kaohsiung First University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Yuang Huang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chia Yi Huang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Guan Jhong Wei

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge