Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia Mi is active.

Publication


Featured researches published by Jia Mi.


Scientific Reports | 2015

The Relationship Between Altered Mitochondrial DNA Copy Number And Cancer Risk: A Meta-Analysis

Jia Mi; Geng Tian; Shuang Liu; Xianglin Li; Tianhui Ni; Liwei Zhang; Bin Wang

Currently, a comprehensive assessment between mitochondrial DNA (mtDNA) content and cancer risk is lacking. We designed this meta-analysis to test the hypothesis that altered mtDNA copy number might influence genetic susceptibility to some specific types of cancer. The processes of literature search, eligibility appraisal and data retrieval were independently completed in duplicate. The mtDNA copy number which was dichotomized or classified into tertiles was compared between cancer cases and controls. Twenty-six articles with 38 study groups were analyzed among 6682 cases and 9923 controls. When dichotomizing mtDNA copy number at the median value, there was an 11% increased cancer risk for carriers of high mtDNA content (P = 0.320). By cancer type, high mtDNA content was associated with an increased risk for lymphoma (OR = 1.76; P = 0.023) but a reduced risk for skeleton cancer (OR = 0.39; P = 0.001). Carriers of the 2nd and 3rd tertiles of mtDNA copy number had an 1.74-fold (P = 0.010) and 2.07-fold (P = 0.021) increased risk of lymphoma, respectively. By contrast, there was correspondingly a 56% (P < 0.001) and 80% (P < 0.001) reduced risk of skeleton cancer. Our findings suggested that elevated mtDNA content was associated with a higher risk for lymphoma, but a lower risk for skeleton cancer.


Scientific Reports | 2015

Circulating interleukin-6 and cancer: A meta-analysis using Mendelian randomization

Geng Tian; Jia Mi; Xiaodan Wei; Dongmei Zhao; Lingyan Qiao; Chunhua Yang; Xianglin Li; Shuping Zhang; Xuri Li; Bin Wang

Interleukin-6 (IL-6) plays a contributory role in the progression and severity of many forms of cancer; it however remains unclear whether the relevance between circulating IL-6 and cancer is causal. We therefore meta-analyzed published articles in this regard using IL-6 gene -174G/C variant as an instrument. Seventy-eight and six articles were eligible for the association of -174G/C variant with cancer and circulating IL-6, respectively. Overall analyses failed to identify any significance between -174G/C and cancer risk. In Asians, carriers of the -174CC genotype had an 1.95-fold increased cancer risk compared with the -174GG genotype carriers (P = 0.009). By cancer type, significance was only attained for liver cancer with the -174C allele conferring a reduced risk under allelic (odds ratio or OR = 0.74; P = 0.001), homozygous genotypic (OR = 0.59; P = 0.029) and dominant (OR = 0.67; P = 0.004) models. Carriers of the -174CC genotype (weighted mean difference or WMD = −4.23 pg/mL; P < 0.001) and -174C allele (WMD = −3.43 pg/mL; P < 0.001) had circulating IL-6 reduced significantly compared with the non-carriers. In further Mendelian randomization analysis, a reduction of 1 pg/mL in circulating IL-6 was significantly associated with an 12% reduced risk of liver cancer. Long-term genetically-reduced circulating IL-6 might be causally associated with a lower risk of liver cancer.


Journal of Proteome Research | 2017

Posttranscriptional Regulation in Adenovirus Infected Cells

Hongxing Zhao; Anne Konzer; Jia Mi; Moashan Chen; Ulf Pettersson; Sara Bergström Lind

A deeper understanding of how viruses reprogram their hosts for production of progeny is needed to combat infections. Most knowledge on the regulation of cellular gene expression during adenovirus infection is derived from mRNA studies. Here, we investigated the changes in protein expression during the late phase of adenovirus type 2 (Ad2) infection of the IMR-90 cell line by stable isotope labeling in cell culture with subsequent liquid chromatography-high resolution tandem mass spectrometric analysis. Two biological replicates of samples collected at 24 and 36 h post-infection (hpi) were investigated using swapped labeling. In total, 2648 and 2394 proteins were quantified at 24 and 36 hpi, respectively. Among them, 659 and 645 were deregulated >1.6-fold at the two time points. The protein expression was compared with RNA expression using cDNA sequencing data. The correlation was surprisingly low (r = 0.3), and several examples of posttranscriptional regulation were observed; e.g., proteins related to carbohydrate metabolism were up-regulated at the protein level but unchanged at the RNA level, whereas histone proteins were down-regulated at the protein level but up-regulated at the RNA level. The deregulation of cellular gene expression by adenovirus is mediated at multiple levels and more complex than hitherto believed.


Scientific Reports | 2016

VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis.

Delong Huang; Chen Zhao; Rong Ju; Anil Kumar; Geng Tian; Lijuan Huang; Lei Zheng; Xianglin Li; Lixian Liu; Shasha Wang; Xiangrong Ren; Zhimin Ye; Wei Chen; Liying Xing; Qishan Chen; Zhiqin Gao; Jia Mi; Zhongshu Tang; Bin Wang; Shuping Zhang; Chunsik Lee; Xuri Li

Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago. However, its role in hyperglycemia- and VEGF-A inhibition-induced retinal apoptosis remains unknown thus far. Yet, drugs that can block VEGF-B are being used to treat patients with diabetic retinopathy and other ocular neovascular diseases. It is therefore urgent to have a better understanding of the function of VEGF-B in these pathologies. Here, we report that both streptozotocin (STZ)-induced diabetes in rats and Macugen intravitreal injection in mice leads to retinal apoptosis in retinal ganglion cell and outer nuclear layers respectively. Importantly, VEGF-B treatment by intravitreal injection markedly reduced retinal apoptosis in both models. We further reveal that VEGF-B and its receptors, vascular endothelial growth factor 1 (VEGFR1) and neuropilin 1 (NP1), are abundantly expressed in rat retinae and choroids and are upregulated by high glucose with concomitant activation of Akt and Erk. These data highlight an important function of VEGF-B in protecting retinal cells from apoptosis induced by hyperglycemia and VEGF-A inhibition. VEGF-B may therefore have a therapeutic potential in treating various retinal degenerative diseases, and modulation of VEGF-B activity in the eye needs careful consideration.


Data in Brief | 2016

Mass spectrometry data from a quantitative analysis of protein expression in gills of immuno-challenged blue mussels (Mytilus edulis)

Katarina Hörnaeus; J. Guillemant; Jia Mi; Bodil Hernroth; Jonas Bergquist; S. Bergström Lind

Here, we provide the dataset associated with our research article on the potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, “Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)” [1]. Blue mussels were stimulated with lipopolysaccharides and samples were collected at different time points post injection. Protein extracts were prepared from the gills, digested using trypsin and a full in-depth proteome investigation was performed using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Protein identification and quantification was performed using the MaxQuant 1.5.1.2 software, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification” [2].


Scientific Reports | 2015

Causal relevance of circulating high-density lipoprotein cholesterol with cancer: a Mendelian randomization meta-analysis

Chunhua Yang; Geng Tian; Jia Mi; Xiaodan Wei; Xuri Li; Xianglin Li; Wenming Wang; Bin Wang

We summarized published data on the associations of apolipoprotein E (APOE) gene ε2/ε3/ε4 polymorphism with both cancer risk and circulating lipid profiles, aiming to examine the causal relevance between lipids and cancer risk. Article identification and data abstraction were conducted in duplicate and independently by two authors. Data were analyzed by STATA software. Twenty-five articles that examined the associations of APOE gene ε2/ε3/ε4 polymorphism with either cancer risk (n = 22) or circulating lipid changes (n = 4) were eligible. The presence of ε2 and ε4 alleles showed no overall associations with overall cancer risk when compared with ε3 allele. The ε4 allele was significantly associated with 1.40-fold (odds ratio or OR = 1.40; 95% confidence interval or CI: 1.00–1.94; P = 0.047) increased risk of developing cancer in Asian populations, and the presence of heterogeneity was low (I2 = 37.6%). Carriers of ε3/ε4 genotype had a significant reduction in circulating HDL-C (WMD = −2.62; 95% CI: −4.19 to −1.04; P = 0.001) without heterogeneity (I2 = 16.6%). The predicted odds of having cancer for 1 mg/dL reduction in circulating HDL-C was 1.14 (95% CI: 1.00 to 1.89). The findings of this Mendelian randomization meta-analysis demonstrate that reduced circulating HDL-C might be a potentially causal risk factor for the development of overall cancer in Asians.


Free Radical Research | 2015

Mass-spectrometry-based characterization of oxidations in proteins

Konstantin A. Artemenko; Jia Mi; Jonas Bergquist

Abstract Protein modifications such as oxidations have a strong impact on protein function and activity in various organisms. High-resolution mass spectrometric techniques in combination with various sample preparation methodologies allow for the in-detail characterization of protein structures and strongly contribute to a greater understanding of the impact of protein modifications in nature. This paper outlines the general workflows for the characterization of oxidation sites in proteins by mass spectrometry (MS). Different types of oxidations are taken into consideration; both qualitative and quantitative aspects of MS-based approaches are presented with respect to oxidized proteins. Both bottom-up and top-down MS approaches are described and evaluated; a wide range of the particular applications corresponding to these techniques is also presented. Furthermore, the common advantages and downsides of these techniques are assessed. The approaches for enrichment of low-abundance oxidized proteins are extensively presented for different cysteine oxidations and protein carbonylations. A short description about databases and bioinformatic software solutions for oxidative protein prediction, identification, and biological interpretation is also given in this review.


Molecular & Cellular Proteomics | 2017

A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle

Arvind Venkat Namuduri; Gabriel Heras; Jia Mi; Nicola Cacciani; Katarina Hörnaeus; Anne Konzer; Sara Bergström Lind; Lars Larsson; Stefano Gastaldello

The small ubiquitin-like modifier (SUMO) is as a regulator of many cellular functions by reversible conjugation to a broad number of substrates. Under endogenous or exogenous perturbations, the SUMO network becomes a fine sensor of stress conditions by alterations in the expression level of SUMO enzymes and consequently changing the status of SUMOylated proteins. The diaphragm is the major inspiratory muscle, which is continuously active under physiological conditions, but its structure and function is severely affected when passively displaced for long extents during mechanical ventilation (MV). An iatrogenic condition called Ventilator-Induced Diaphragm Dysfunction (VIDD) is a major cause of failure to wean patients from ventilator support but the molecular mechanisms underlying this dysfunction are not fully understood. Using a unique experimental Intensive Care Unit (ICU) rat model allowing long-term MV, diaphragm muscles were collected in rats control and exposed to controlled MV (CMV) for durations varying between 1 and 10 days. Endogenous SUMOylated diaphragm proteins were identified by mass spectrometry and validated with in vitro SUMOylation systems. Contractile, calcium regulator and mitochondrial proteins were of specific interest due to their putative involvement in VIDD. Differences were observed in the abundance of SUMOylated proteins between glycolytic and oxidative muscle fibers in control animals and high levels of SUMOylated proteins were present in all fibers during CMV. Finally, previously reported VIDD biomarkers and therapeutic targets were also identified in our datasets which may play an important role in response to muscle weakness seen in ICU patients. Data are available via ProteomeXchange with identifier PXD006085. Username: [email protected], Password: rwcP5W0o.


Oncotarget | 2017

A multicenter matched case-control analysis on seven polymorphisms from HMGB1 and RAGE genes in predicting hepatocellular carcinoma risk

Dan Wang; Xiaoying Qi; Fang Liu; Chuanhua Yang; Wenguo Jiang; Xiaodan Wei; Xuri Li; Jia Mi; Geng Tian

Based on 540 hepatocellular carcinoma patients and 540 age- and gender-matched controls, we tested the hypothesis that high mobility group protein box1 (HMGB1) and the receptor for advanced glycation end products (RAGE) genes are two potential candidate susceptibility genes for hepatocellular carcinoma in a multicenter hospital-based case-control analysis. The genotypes of seven widely-studied polymorphisms were determined, and their distributions respected the Hardy-Weinberg equilibrium. The mutant alleles of two polymorphisms, rs1045411 in HMGB1 gene and rs2070600 in RAGE gene, had significantly higher frequencies in patients than in controls (P < 0.001), with the power to detect this significance of being over 99.9%. Moreover, the above two polymorphisms increased the risk of developing hepatocellular carcinoma significantly, particularly for rs2070600 under the additive (odds ratio [OR] = 1.77; 95% confidence interval [CI]: 1.34-2.32; P < 0.001) and dominant (OR = 1.75; 95% CI: 1.23-2.50; P = 0.002) models after adjusting for body mass index, smoking and drinking. Haplotype analysis showed that the T-C-T haplotype (rs1045411-rs2249825-rs1415125) in HMGB1 gene was associated with a 2.47-fold (95% CI: 1.41-4.34; P = 0.002) increased risk of hepatocellular carcinoma compared with the commonest C-C-T haplotype after adjustment. In RAGE gene, the T-T-A-G (rs1800625-rs1800624-rs2070600-rs184003) (adjusted OR; 95% CI; P: 1.75; 1.02-3.03; 0.045) and T-T-A-T (adjusted OR; 95% CI; P: 1.95; 1.01-3.76; 0.048) haplotypes were associated with a marginally increased risk of hepatocellular carcinoma compared with the commonest T-T-G-G haplotype. In summary, we identified two risk-associated polymorphisms (rs1045411 and rs2070600), and more importantly a joint impact of seven polymorphisms from the HMGB1/RAGE axis in susceptibility to hepatocellular carcinoma.


Oncotarget | 2016

PDGF-CC underlies resistance to VEGF-A inhibition and combinatorial targeting of both suppresses pathological angiogenesis more efficiently

Lei Zheng; Chen Zhao; Yuxiang Du; Xianchai Lin; Yida Jiang; Chunsik Lee; Geng Tian; Jia Mi; Xianglin Li; Qishan Chen; Zhimin Ye; Lijuan Huang; Shasha Wang; Xiangrong Ren; Liying Xing; Wei Chen; Delong Huang; Zhiqin Gao; Shuping Zhang; Weisi Lu; Zhongshu Tang; Bin Wang; Rong Ju; Xuri Li

Anti-VEGF-A therapy has proven to be effective for many neovascular diseases. However, drug resistance to anti-VEGF-A treatment can develop. Also, not all patients with neovascular diseases are responsive to anti-VEGF-A treatment. The mechanisms underlying these important issues remain unclear. In this study, using different model systems, we found that inhibition of VEGF-A directly upregulated PDGF-CC and its receptors in multiple cell types in pathological angiogenesis in vitro and in vivo. Importantly, we further revealed that combinatorial targeting of VEGF-A and PDGF-CC suppressed pathological angiogenesis more efficiently than monotherapy. Given the potent angiogenic activity of PDGF-CC, our findings suggest that the development of resistance to anti-VEGF-A treatment may be caused by the compensatory upregulation of PDGF-CC, and combined inhibition of VEGF-A and PDGF-CC may have therapeutic advantages in treating neovascular diseases.

Collaboration


Dive into the Jia Mi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge