Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia-Wei Lee is active.

Publication


Featured researches published by Jia-Wei Lee.


Applied Mathematics and Computation | 2013

Analytical derivation and numerical experiments of degenerate scales for regular N-gon domains in two-dimensional Laplace problems

Shyh-Rong Kuo; Jeng-Tzong Chen; Jia-Wei Lee; Yi-Wei Chen

Degenerate scale of a regular N-gon domain is studied by using the boundary element method (BEM) and complex variables. Degenerate scale stems from either the non-uniqueness of BIE using the logarithmic kernel or the conformal radius of unit logarithmic capacity in the complex variables. Analytical formula and numerical results for the degenerate scale are obtained by using the conformal radius and boundary element program, respectively. Analytical formula of the degenerate scale contains the Gamma function for the Gamma contour which can be derived from the Schwarz-Christoffel mapping. Based on the dual BEM, the rank-deficiency (mathematical) mode due to the degenerate scale (mathematics) is imbedded in the left unitary vector for the influence matrices of weakly singular (U kernel) and strongly singular (T kernel) integral operators. On the other hand, we obtain the common right unitary vector corresponding to a rigid body mode (physics) in the influence matrices of strongly singular (T kernel) and hypersingular (M kernel) operators after using the singular value decomposition. To deal with the problem of non-unique solution, the constraint of boundary flux equilibrium instead of rigid body term, CHEEF and hypersingular BIE, is added to promote the rank of influence matrices to be full rank. Null field for the exterior domain and interior nonzero field are analytically derived and numerically verified for the normal scale while the interior null field and nonzero exterior field are obtained for the homogeneous Dirichlet problem in the case of the degenerate scale. It is found that the contour of nonzero exterior field for the degenerate scale using the BEM matches well with that of Schwarz-Christoffel transformation. Both analytical and numerical results agree well in the demonstrative examples of right triangle, square, regular 5-gon and regular 6-gon. It is straightforward to extend to general regular N-gon case.


Applicable Analysis | 2012

Water wave problems using null-field boundary integral equations: ill-posedness and remedies

Jeng-Tzong Chen; Jia-Wei Lee

In this article, we focus on the hydrodynamic scattering of water wave problems containing circular and/or elliptical cylinders. Regarding water wave problems, the phenomena of numerical instability due to fictitious frequencies may appear when the boundary element method (BEM) is used. We examine the occurring mechanism of fictitious frequency in the BEM through a water wave problem containing an elliptical cylinder. In order to study the fictitious frequency analytically, the null-field boundary integral equation method in conjunction with degenerate kernels is employed to derive the analytical solution. The modal participation factor for the numerical instability of zero divided by zero can be exactly determined in a continuous system even though the circulant matrix cannot be obtained in a discrete system for the elliptical case. It is interesting to find that irregular values depend on the geometry of boundaries as well as integral representations and happen to be zeros of the mth-order (even or odd) modified Mathieu functions of the first kind or their derivatives. To avoid using the addition theorem to translate the Bessel functions to the Mathieu functions, the present approach can solve for the water wave problem containing circular and/or elliptical cylinders at the same time in a semi-analytical manner by using the adaptive observer system. The closed-form fundamental solution is expressed in terms of the degenerate kernel in the polar and elliptic coordinates for circular and elliptical cylinders, respectively. Three examples are considered to demonstrate the validity of the present approach, including an elliptical cylinder, two parallel identical elliptical cylinders and one circular cylinder and one elliptical cylinder. Finally, two regularization techniques, the combined Helmholtz interior integral equation formulation method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.


IEEE Transactions on Microwave Theory and Techniques | 2012

A Semianalytical Approach for a Nonconfocal Suspended Strip in an Elliptical Waveguide

Jia-Wei Lee; Jeng-Tzong Chen

A problem of a nonconfocal suspended strip in an elliptical waveguide is analyzed by using a semianalytical approach, which is the so-called null-field boundary integral-equation method (BIEM). The null-field BIEM is proposed by introducing the idea of null field, degenerate kernels, and eigenfunction expansion to improve the conventional dual boundary-element method (BEM). A closed-form fundamental solution can be expressed in terms of the degenerate kernel containing the Mathieu and modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. By this way, the efficiency is promoted in three aspects: analytical boundary integral without numerical error, natural bases for boundary densities, and exact description of boundary geometry. Due to the semianalytical formulation, the null-field BIEM can fully capture the property of geometry and the error only occurs from the truncation of the number of the eigenfunction expansion terms in the real implementation. The present method is also a kind of meshless method since only boundary nodes are needed to construct influence matrices instead of using boundary elements. Both TE and TM cases are considered in this paper. To verify the validity of the present method, the dual BEM and finite-element method are also utilized to provide cutoff wavenumbers. Besides, the analytical solution of a confocal elliptical waveguide can be derived by using the present method. After comparing with published data, good agreement is made.


Applied Mathematics and Computation | 2010

Image solutions for boundary value problems without sources

Jeng-Tzong Chen; Hung-Chih Shieh; Ying-Te Lee; Jia-Wei Lee

In this paper, we employ the image method to solve boundary value problems in domains containing circular or spherical shaped boundaries free of sources. two and threeD problems as well as symmetric and anti-symmetric cases are considered. By treating the image method as a special case of method of fundamental solutions, only at most four unknown strengths, distributed at the center, two locations of frozen images and one free constant, need to be determined. Besides, the optimal locations of sources are determined. For the symmetric and anti-symmetric cases, only two coefficients are required to match the two boundary conditions. The convergence rate versus number of image group is numerically performed. The differences of the image solutions between 2D and 3D problems are addressed. It is found that the 2D solution in terms of the bipolar coordinates is mathematically equivalent to that of the simplest MFS with only two sources and one free constant. Finally, several examples are demonstrated to see the validity of the image method for boundary value problems.


Applied Mathematics and Computation | 2011

Study on connections of the MFS, Trefftz method, indirect BIEM and invariant MFS in the three-dimensional Laplace problems containing spherical boundaries

Jeng-Tzong Chen; Jhen-Jyun Tsai; Ying-Te Lee; Jia-Wei Lee

Following the success of a study on the method of fundamental solutions using an image concept [13], we extend to solve the three-dimensional Laplace problems containing spherical boundaries by using the three approaches. The case of eccentric sphere for the Laplace problem is considered. The optimal locations for the source distribution to include the foci in the MFS are also examined by using the image concept in the 3D problems. Whether a free constant is required or not in the MFS is also studied. The error distribution is discussed after comparing with the analytical solution derived by using the bispherical coordinates. Besides, the relationship between the Trefftz bases and the singularity in the MFS for the three-dimensional Laplace problems is also addressed. It is found that one source of the MFS contains several interior and exterior Trefftz sets through a degenerate kernel. On the contrary, one single Trefftz base can be superimposed by some lumped sources in the MFS through an indirect BIEM. Based on this finding, the relationship between the fictitious boundary densities of the indirect BIEM and the singularity strength in the MFS can be constructed due to the fact that the MFS is a lumped version of an indirect BIEM.


Boundary Value Problems | 2010

Image Location for Screw Dislocation—A New Point of View

Jeng-Tzong Chen; Ying-Te Lee; Ke-Hsun Chou; Jia-Wei Lee

An infinite plane problem with a circular boundary under the screw dislocation is solved by using a new method. The angle-based fundamental solution for screw dislocation is expanded into degenerate kernel. Our method can explain why the image screw dislocation is required. Besides, the location of the image point can be obtained easily by using degenerate kernel after satisfying boundary conditions. Even though the image concept is required, the location of image point can be determined straightforwardly through the degenerate kernel instead of the method of reciprocal radii. Finally, two examples are demonstrated to verify the validity of the present method.


Earthquake Engineering and Engineering Vibration | 2016

Focusing phenomenon and near-trapped modes of SH waves

Jeng-Tzong Chen; Jia-Wei Lee; Ya-Ching Tu

In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.


Journal of Vibration and Acoustics | 2014

True and Spurious Eigensolutions of an Elliptical Membrane by Using the Nondimensional Dynamic Influence Function Method

Jeng-Tzong Chen; Jia-Wei Lee; Ying-Te Lee; Wen-Che Lee

In this paper, we employ the nondimensional dynamic influence function (NDIF) method to solve the free vibration problem of an elliptical membrane. It is found that the spurious eigensolutions appear in the Dirichlet problem by using the double-layer potential approach. Besides, the spurious eigensolutions also occur in the Neumann problem if the single-layer potential approach is utilized. Owing to the appearance of spurious eigensolutions accompanied with true eigensolutions, singular value decomposition (SVD) updating techniques are employed to extract out true and spurious eigenvalues. Since the circulant property in the discrete system is broken, the analytical prediction for the spurious solution is achieved by using the indirect boundary integral formulation. To analytically study the eigenproblems containing the elliptical boundaries, the fundamental solution is expanded into a degenerate kernel by using the elliptical coordinates and the unknown coefficients are expanded by using the eigenfunction expansion. True and spurious eigenvalues are simultaneously found to be the zeros of the modified Mathieu functions of the first kind for the Dirichlet problem when using the single-layer potential formulation, while both true and spurious eigenvalues appear to be the zeros of the derivative of modified Mathieu function for the Neumann problem by using the double-layer potential formulation. By choosing only the imaginary-part kernel in the indirect boundary integral equation method (BIEM) to solve the eigenproblem of an elliptical membrane, spurious eigensolutions also appear at the same position with those of NDIF since boundary distribution can be lumped. The NDIF method can be seen as a special case of the indirect BIEM by lumping the boundary distribution. Both the analytical study and the numerical experiments match well with the same true and spurious solutions. [DOI: 10.1115/1.4026354]


Soil Dynamics and Earthquake Engineering | 2011

SH-wave diffraction by a semi-circular hill revisited: A null-field boundary integral equation method using degenerate kernels

Jeng-Tzong Chen; Jia-Wei Lee; Chine-Feng Wu; I.L. Chen


Computational Mechanics | 2010

Torsional rigidity of an elliptic bar with multiple elliptic inclusions using a null-field integral approach

Jeng-Tzong Chen; Ying-Te Lee; Jia-Wei Lee

Collaboration


Dive into the Jia-Wei Lee's collaboration.

Top Co-Authors

Avatar

Jeng-Tzong Chen

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Ying-Te Lee

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Hong-Ki Hong

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hung-Chih Shieh

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

I.L. Chen

National Kaohsiung Marine University

View shared research outputs
Top Co-Authors

Avatar

Shyue-Yuh Leu

China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chine-Feng Wu

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Shing-Kai Kao

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Jhen-Jyun Tsai

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Ke-Hsun Chou

National Taiwan Ocean University

View shared research outputs
Researchain Logo
Decentralizing Knowledge