Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiabing Fan is active.

Publication


Featured researches published by Jiabing Fan.


Carbohydrate Polymers | 2013

Anionic carbohydrate-containing chitosan scaffolds for bone regeneration

Hyejin Park; Bogyu Choi; John Nguyen; Jiabing Fan; Sahar Shafi; Perry R. Klokkevold; Min Lee

Scaffolds derived from naturally occurring polysaccharides have attracted significant interest in bone tissue engineering due to their excellent biocompatibility and hydrophilic nature favorable for cell attachment. In this study, we developed composite chitosan (CH) scaffolds containing anionic carbohydrate, such as chondroitin 4-sulfate (CS) or alginate (AG), with biomimetic apatite layer on their surfaces, and investigate their capacity to deliver progenitor cells (bone marrow stromal cells, BMSC) and model proteins with net-positive (histone) and net-negative charge (bovine serum albumin, BSA). The incorporation of CS or AG in CH scaffolds increased compressive modulus of the scaffolds and enhanced apatite formation. Initial burst release of histone was significantly higher than that of BSA from CH scaffold, while the addition of CS or AG in the scaffolds significantly reduced the initial burst release of histone, indicating strong electrostatic interaction between histone and negatively charged CS or AG. The apatite layer created on scaffold surfaces significantly reduced the initial burst release of both BSA and histone. Furthermore, apatite-coated scaffolds enhanced spreading, proliferation, and osteogenic differentiation of BMSC seeded on the scaffolds compared to non-coated scaffolds as assessed by live/dead and alamarBlue assays, scanning electron microscopy (SEM), alkaline phosphatase (ALP) activity, and Picrosirius red staining. This study suggests that apatite-coated CH/CS composite scaffolds have the potential as a promising osteogenic system for bone tissue engineering applications.


PLOS ONE | 2013

Enhanced Osteogenesis of Adipose Derived Stem Cells with Noggin Suppression and Delivery of BMP-2

Jiabing Fan; Hyejin Park; Steven Tan; Min Lee

Bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors. However, BMPs are highly pleiotropic molecules and their supra-physiological high dose requirement leads to adverse side effects and inefficient bone formation. Thus, there is a need to develop alternative osteoinductive growth factor strategies that can effectively complement BMP activity. In this study, we intrinsically stimulated BMP signaling in adipose derived stem cells (ASCs) by downregulating noggin, a potent BMP antagonist, using an RNAi strategy. ASCs transduced with noggin shRNA significantly enhanced osteogenic differentiation of cells. The potency of endogenous BMPs was subsequently enhanced by stimulating ASCs with exogenous BMPs at a significantly reduced dose. The level of mineralization in noggin shRNA treated ASCs when treated with BMP-2 was comparable to that of control shRNA treated cell treated with 10-fold more BMP-2. The complementary strategy of noggin suppression + BMP-2 to enhance osteogenesis was further confirmed in 3D in vitro environments using scaffolds consisting of chitosan (CH), chondroitin sulfate (CS), and apatite layer on their surfaces designed to slowly release BMP-2. This finding supports the novel therapeutic potential of this complementary strategy in bone regeneration.


Journal of Controlled Release | 2015

Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells

Zhong-Kai Cui; Jiabing Fan; Soyon Kim; Olga Bezouglaia; Armita Fartash; Benjamin M. Wu; Tara Aghaloo; Min Lee

Noggin is a specific antagonist of bone morphogenetic proteins (BMPs) that can prevent the interaction of BMPs with their receptors. RNA interfering molecules have been used to downregulate noggin expression and thereby stimulate BMP signaling and osteogenesis. Cationic liposomes are considered one of the most efficient non-viral systems for gene delivery. In the past decade, non-phospholipid liposomes (Sterosomes) formulated with single-chain amphiphiles and high content of sterols have been developed. In particular, Sterosomes composed of stearylamine (SA) and cholesterol (Chol) display distinct properties compared with traditional phospholipid liposomes, including increased positive surface charges and enhanced particle stability. Herein, we report SA/Chol Sterosome and small interfering RNA (siRNA) complexes that significantly enhanced cellular uptake and gene knockdown efficiencies in adipose derived mesenchymal stem cells with minimal cytotoxicity compared with commercially available lipofectamine 2000. Furthermore, we confirmed osteogenic efficacy of these Sterosomes loaded with noggin siRNA in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. The delivery of siRNA via novel SA/Chol Sterosomes presents a powerful method for efficient gene knockdown. These distinct nanoparticles may present a promising alternative approach for gene delivery.


Journal of Materials Chemistry B | 2015

Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation

Bogyu Choi; Zhong-Kai Cui; Soyon Kim; Jiabing Fan; Benjamin M. Wu; Min Lee

RNA interference (RNAi)-based therapy using small interfering RNA (siRNA) exhibits great potential to treat diseases. Although calcium phosphate (CaP)-based systems are attractive options to deliver nucleic acids due to their good biocompatibility and high affinity with nucleic acids, they are limited by uncontrollable particle formation and inconsistent transfection efficiencies. In this study, we developed a stable CaP nanocarrier system with enhanced intracellular uptake by adding highly cationic, glutamine-conjugated oligochitosan (Gln-OChi). CaP nanoparticles coated with Gln-OChi (CaP/Gln-OChi) significantly enhanced gene transfection and knockdown efficiency in both immortalized cell line (HeLa) and primary mesenchymal stem cells (MSCs) with minimal cytotoxicity. The osteogenic bioactivity of siRNA-loaded CaP/Gln-OChi particles was further confirmed in three-dimensional environments by using photocrosslinkable chitosan hydrogels encapsulating MSCs and particles loaded with siRNA targeting noggin, a bone morphogenetic protein antagonist. These findings suggest that our CaP/Gln-OChi nanocarrier provides an efficient and safe gene delivery system for therapeutic applications.


Journal of Materials Chemistry B | 2016

Photocrosslinkable chitosan hydrogels functionalized with the RGD peptide and phosphoserine to enhance osteogenesis

Soyon Kim; Zhong-Kai Cui; Jiabing Fan; Armita Fartash; Tara Aghaloo; Min Lee

Hydrogels derived from naturally occurring polymers are attractive matrix for tissue engineering. Here, we report a biofunctional hydrogel for specific use in bone regeneration by introducing Arg-Gly-Asp (RGD)-containing cell adhesive motifs and phosphorylated serine residues, which are prevalent in native bone extracellular matrix and known to promote osteogenesis by enhancing cell-matrix interactions and hydroxyapatite nucleation, into photopolymerizable methacrylated glycol chitosan (MeGC). Incorporation of phosphoserine into MeGC hydrogels increased the ability of the hydrogels to nucleate mineral on their surfaces. RGD incorporation enhanced cell-matrix interactions by supporting attachment, spreading, and proliferation of bone marrow stromal cells (BMSCs) encapsulated in the hydrogels. Moreover, co-modification of MeGC hydrogels with RGD and phosphoserine synergistically increased osteogenic differentiation of encapsulated BMSCs in vitro. The bone healing capacity of the modified hydrogels was further confirmed in a mouse calvarial defect model. These findings suggest a promising hydrogel platform with a specific microenvironment tailored to promote osteogenesis for clinical bone repair.


Stem Cells Translational Medicine | 2016

Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists

Jiabing Fan; Choong Sung Im; Mian Guo; Zhong-Kai Cui; Armita Fartash; Soyon Kim; Nikhil A. Patel; Olga Bezouglaia; Benjamin M. Wu; Cun-Yu Wang; Tara Aghaloo; Min Lee

Although adipose‐derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP–Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite‐coated poly(lactic‐coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP‐based therapeutics.


Journal of Biomedical Materials Research Part A | 2016

Cell-based strategies for vascular regeneration.

Tongqiang Zou; Jiabing Fan; Armita Fartash; Haifeng Liu; Yubo Fan

Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.


Stem Cells International | 2016

Effects of Mechanical Stretch on Cell Proliferation and Matrix Formation of Mesenchymal Stem Cell and Anterior Cruciate Ligament Fibroblast

Liguo Sun; Ling Qu; Rui Zhu; Hongguo Li; Yingsen Xue; Xincheng Liu; Jiabing Fan; Hongbin Fan

Mesenchymal stem cells (MSCs) and fibroblasts are two major seed cells for ligament tissue engineering. To understand the effects of mechanical stimulation on these cells and to develop effective approaches for cell therapy, it is necessary to investigate the biological effects of various mechanical loading conditions on cells. In this study, fibroblasts and MSCs were tested and compared under a novel Uniflex/Bioflex culture system that might mimic mechanical strain in ligament tissue. The cells were uniaxially or radially stretched with different strains (5%, 10%, and 15%) at 0.1, 0.5, and 1.0 Hz. The cell proliferation and collagen production were compared to find the optimal parameters. The results indicated that uniaxial stretch (15% at 0.5 Hz; 10% at 1.0 Hz) showed positive effects on fibroblast. The uniaxial strains (5%, 10%, and 15%) at 0.5 Hz and 10% strain at 1.0 Hz were favorable for MSCs. Radial strain did not have significant effect on fibroblast. On the contrary, the radial strains (5%, 10%, and 15%) at 0.1 Hz had positive effects on MSCs. This study suggested that fibroblasts and MSCs had their own appropriate mechanical stimulatory parameters. These specific parameters potentially provide fundamental knowledge for future cell-based ligament regeneration.


Acta Biomaterialia | 2017

Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair

Zhong-Kai Cui; Justin A. Sun; Jessalyn J. Baljon; Jiabing Fan; Soyon Kim; Benjamin M. Wu; Tara Aghaloo; Min Lee

The use of small molecular drugs with gene manipulation offers synergistic therapeutic efficacy by targeting multiple signaling pathways for combined treatment. Stimulation of mesenchymal stem cells (MSCs) with osteoinductive small molecule phenamil combined with suppression of noggin is a promising therapeutic strategy that increases bone morphogenetic protein (BMP) signaling and bone repair. Our cationic Sterosome formulated with stearylamine (SA) and cholesterol (Chol) is an attractive co-delivery system that not only forms stable complexes with small interfering RNA (siRNA) molecules but also solubilizes hydrophobic small molecules in a single vehicle, for directing stem cell differentiation. Herein, we demonstrate the ability of SA/Chol Sterosomes to simultaneously deliver hydrophobic small molecule phenamil and noggin-directed siRNA to enhance osteogenic differentiation of MSCs both in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. These results suggest a novel liposomal platform to simultaneously deliver therapeutic genes and small molecules for combined therapy. STATEMENT OF SIGNIFICANCE Application of phenamil, a small molecular bone morphogenetic protein (BMP) stimulator, combined with suppression of natural BMP antagonists such as noggin is a promising therapeutic strategy to enhance bone regeneration. Here, we present a novel strategy to co-deliver hydrophobic small molecule phenamil and noggin-targeted siRNA via cationic Sterosomes formed with stearylamine (SA) and high content of cholesterol (Chol) to enhance osteogenesis and bone repair. SA/Chol Sterosomes demonstrated high phenamil encapsulation efficiency, supported sustained release of encapsulated drugs, and significantly reduced drug dose requirements to induce osteogenic differentiation of mesenchymal stem cells (MSCs). Simultaneous deliver of phenamil and noggin siRNA in a single vehicle synergistically enhanced MSC osteogenesis and calvarial bone repair. This study suggests a new non-phospholipid liposomal formulation to simultaneously deliver small molecules and therapeutic genes for combined treatment.


Scientific Reports | 2017

Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2

Jiabing Fan; Joan Pi-Anfruns; Mian Guo; Dan C. S. Im; Zhong-Kai Cui; Soyon Kim; Benjamin M. Wu; Tara Aghaloo; Min Lee

Although bone morphogenetic protein-2 (BMP2) has demonstrated extraordinary potential in bone formation, its clinical applications require supraphysiological milligram-level doses that increase postoperative inflammation and inappropriate adipogenesis, resulting in well-documented life-threatening cervical swelling and cyst-like bone formation. Recent promising alternative biomolecular strategies are toward promoting pro-osteogenic activity of BMP2 while simultaneously suppressing its adverse effects. Here, we demonstrated that small molecular phenamil synergized osteogenesis and bone formation with BMP2 in a rat critical size mandibular defect model. Moreover, we successfully elicited the BMP2 adverse outcomes (i.e. adipogenesis and inflammation) in the mandibular defect by applying high dose BMP2. Phenamil treatment significantly improves the quality of newly formed bone by inhibiting BMP2 induced fatty cyst-like structure and inflammatory soft-tissue swelling. The observed positive phenamil effects were associated with upregulation of tribbles homolog 3 (Trib3) that suppressed adipogenic differentiation and inflammatory responses by negatively regulating PPARγ and NF-κB transcriptional activities. Thus, use of BMP2 along with phenamil stimulation or Trib3 augmentation may be a promising strategy to improve clinical efficacy and safety of current BMP therapeutics.

Collaboration


Dive into the Jiabing Fan's collaboration.

Top Co-Authors

Avatar

Min Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Soyon Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Tara Aghaloo

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhong-Kai Cui

University of California

View shared research outputs
Top Co-Authors

Avatar

Armita Fartash

University of California

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogyu Choi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbin Fan

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge