Jiabing Wu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiabing Wu.
Phytomedicine | 2009
Henglei Lu; J. Chen; Wenyong Li; Bingru Ren; Jiabing Wu; Hongqi Zhang
The antidiabetic effect of the total flavonoids fraction from leaves of Eriobotrya japonica (EJF) was evaluated through normal and streptozotocin-induced diabetic mice with graded oral doses of 150, 300, 450 mg/kg for 7 days or 14 days. The result showed that the dose of 300 mg/kg and 450 mg/kg resulted significant hypoglycemic effect on normal mice, the dose of 300 mg/kg induced significant decrease in plasma glucose concentration (PGC), glycosylated serum protein (GSP), total cholesterol (TC) and triglyceride (TG), and significant increase in superoxide dismutase (SOD) activity and serum insulin level in streptozotocin-diabetic mice. These results suggested that EJF has hypoglycemic potential.
Frontiers in Microbiology | 2016
Zongwei Xia; Edith Bai; Qingkui Wang; Decai Gao; Jidong Zhou; Ping Jiang; Jiabing Wu
Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e., Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Planctomycetes (relative abundance >5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca2+ (ECa2+) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than geographic dispersal limitation in determining the bacterial community structure in Chinese forest soils.
Scandinavian Journal of Forest Research | 2010
Jiabing Wu; Xinjian Zhang; Haolei Wang; Jinwei Sun; Dexin Guan
Abstract Carbon dioxide (CO2) flux from coarse woody debris is an important source of carbon emission in forests with large amounts of coarse woody debris (CWD). Respiration from downed logs of Korean pine (Pinus koraiensis Sieb. et Zucc.) and Amur linden (Tilia amurensis Rupr.) and their response to meteorological factors were investigated using the closed static chamber–gas chromatography technique in an old-growth temperate forest in Changbai Mountain region, north-eastern China. On a yearly timescale, daily respiration rates (R log) varied over two orders of magnitude (8.7–252.3 mg Ckg−1), and were significantly correlated with wood water content and temperature (p<0.05). The temperature-dependent empirical exponential models for each decay class explained more than 67% of the observed variations in R log. More decayed wood had a greater water content and pore space than less decayed wood, and these differences were probably responsible for the observed difference in respiration rate among decay classes. The annual carbon loss rate due to respiration was estimated to be 28.0±3.7 g Cm−2, which contributed only about 3% of total carbon loss from forest floor, but net carbon flux from downed logs accounted for up to 15% of net ecosystem exchange in this old temperate forest. Downed logs represent a small, but substantial carbon flux that is expected to increase over the next several decades in old-growth forest.
PLOS ONE | 2015
Yancong Cai; Changjie Jin; Anzhi Wang; Dexin Guan; Jiabing Wu; Fenghui Yuan; Leilei Xu
Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily, monthly and annual scale) indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these data are important for the rational application of TMPA methods in climatic and hydrological research.
Journal of Forestry Research | 2009
Jiabing Wu; Dexin Guan; Fenghui Yuan; Xinjian Zhang
This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses to elevated UV-B radiation and interactions of UV-B radiation with abiotic and biotic factors were also involved. Results collected in this review suggest that approximately two-thirds terrestrial plant species are significantly affected by increase in UV-B radiation. The majority of evidences indicate that elevated UV-B radiation is usually detrimental but there exists tremendous variability in the sensitivity of species to UV-B radiation, and sensitivity also differs among cultivars of the same species.
PLOS ONE | 2013
Jiabing Wu; Dexin Guan; Yuan Fh; Anzhi Wang; Changjie Jin
In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios.
Journal of Geophysical Research | 2009
Dexin Guan; Ye Zhong; Changjie Jin; Anzhi Wang; Jiabing Wu; Tingting Shi; Tingyao Zhu
As vegetative windbreaks become established on a large scale in agricultural ecosystems, understanding the influence of windbreak networks on the momentum budget of the atmospheric boundary layer becomes important. The authors conducted a wind tunnel experiment to study the variation of wind speed profile and surface shear stress of wind flow passing from an open surface to another with parallel windbreaks. Five spacing (L = 5, 10, 15, 20, 30 h, wherein h is the windbreak height) windbreak arrays with moderate porosity (aerodynamic porosity alpha = 0.501) were used in the experiments. Both near-floor and over-array wind speed measurements showed that airflow will approach equilibrium state behind a special windbreak of the array, varying from 4th to 9th windbreak when the spacing change from 30 to 5 h. Within the range of L/h values investigated, arrays with narrower spacing cause higher friction velocity and roughness length, which were up to 2.26 and nearly 100 times those observed over open floor, respectively. A semiempirical momentum budget model is developed on the arrayed surface to estimate windbreak drag and shear stress on the protected floor. Windbreak drag accounts for more than 80% of shear stress on the arrayed surface, and the shear stress on protected floor is less than 20% when L/h < 40 based on the model estimation. The sum of the two estimated components agrees well with the estimates obtained from over-array wind profiles.
Science of The Total Environment | 2017
Weibin Li; Zhen Bai; Changjie Jin; Xinzhong Zhang; Dexin Guan; Anzhi Wang; Fenghui Yuan; Jiabing Wu
Soil respiration is the largest terrestrial carbon flux into the atmosphere, and different tree species could directly influence root derived respiration and indirectly regulate soil respiration rates by altering soil chemical and microbial properties. In this study, we assessed the small scale spatial heterogeneity of soil respiration and the microbial community below the canopy of three dominant tree species (Korean pine (Pinus koraiensis), Mongolian oak (Quercus mongolica), and Manchuria ash (Fraxinus mandshurica)) in a temperate mixed forest in Northeast China. Soil respiration differed significantly during several months and increased in the order of oak<ash<pine, while soil temperature was greater in the order of pine<oak<ash, suggesting that soil respiration variations among tree species were not mainly regulated by soil temperature. In addition, the lower N and higher C concentrations of pine litter resulted in a higher C/N ratio than ash and oak, which might lead to a higher recalcitrance and slower decomposition rate, and decreased heterotrophic respiration under pine. By contrast, fine root biomass was significantly higher under pine than ash and oak, which induced higher soil autotrophic respiration under pine compared to ash and oak. Tree species sharply regulated the bacterial communities through altering the litter and soil properties, while the fungal communities were relatively consistent among tree species. This study revealed the connection between species specific traits and soil respiration, which is crucial for understanding plant-soil feedbacks and improving forecasts of the global carbon cycle.
PLOS ONE | 2015
Yanli Jing; Dexin Guan; Jiabing Wu; Anzhi Wang; Changjie Jin; Fenghui Yuan
Previous studies with different experimental methods have demonstrated that photosynthesis significantly influences soil respiration (RS). To compare the experimental results of different methods, RS after girdling and defoliation was measured in five-year-old seedlings of Fraxinus mandshurica from June to September. Girdling and defoliation significantly reduced RS by 33% and 25% within 4 days, and 40% and 32% within the entire treatment period, respectively. The differential response of RS to girdling and defoliation was a result of the over-compensation for RS after girdling and redistribution of stored carbon after defoliation. No significant effect on RS was observed between girdling and defoliation treatment, while the soluble sugar content in fine roots was higher in defoliation than in girdling treatment, indicating that defoliation had less compensation effect for RS after interrupting photosynthates supply. We confirm the close coupling of RS with photosynthesis and recommend defoliation for further studies to estimate the effect of photosynthesis on RS.
Science of The Total Environment | 2018
Di Sun; Yang H; Dexin Guan; Ming Yang; Jiabing Wu; Fenghui Yuan; Changjie Jin; Anzhi Wang; Yushu Zhang
Land use changes are often considered to be the main factors influencing soil infiltration. But the difference of soil infiltration capacity for different land use type is less clear. In this paper, we conduct a meta-analysis of all 42 papers that could be found associated with the effects of land use changes on soil infiltration capacity. The results showed that soil initial and steady infiltration rates increased after land use changes from grassland to forest (+41.35%, /), shrubland to forest (+42.73%, /) and cropland to agroforestry (+70.28%, +84.17%). Soil infiltration rates declined after land use changes from grassland to cropland (/, -45.23%), shrubland to cropland (-64.24%, /) and forest to cropland (-53.58%, -42.15%). It was evident that soil infiltration rates were negatively related to soil bulk density and initial moisture and positively related to soil total porosity and organic matter content. In sum, establishing agroforestry ecosystem was beneficial to improve soil infiltration capacity compare to cropland and plantation, which has important implications for developing sustainable agriculture and forest from the viewpoint of soil and water conservation.