Jiahe Wu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiahe Wu.
PLOS ONE | 2013
Xiaoli Luo; Jiahe Wu; Yuanbao Li; Zhirun Nan; Xing Guo; Yixue Wang; Anhong Zhang; Zhian Wang; Gui-Xian Xia; Yingchuan Tian
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.
Plant Physiology and Biochemistry | 2011
Chuanfeng Zhu; Yixue Wang; Yuanbao Li; Khizar Hayat Bhatti; Yingchuan Tian; Jiahe Wu
The full-length cDNA of a cyclophilin-like gene was cloned from Gossypium hirsutum using rapid amplification of cDNA ends and was designated as GhCyp1, a member of the immunophilin protein family. GhCyp1 expression level was higher in roots and stems than in other tissues of cotton, as determined by real-time reverse transcription polymerase chain reaction (RT-PCR). To characterize the GhCyp1 gene, tobacco (Nicotiana tabacum) was transformed via Agrobacterium tumefaciens with a vector to express the gene under the control of a strong constitutive promoter, CaMV35S (Cauliflower Mosaic Virus). Based on analyses of tolerance to salinity stress and Pseudomonas syringae pv. tabaci (Pst) infection, the overexpression of GhCyp1 in transgenic plants conferred higher tolerance to salt stress and Pst infection compared with control plants. Therefore, we suggest that GhCyp1 may be a suitable candidate gene to produce transgenic plants with tolerance to abiotic and biotic stresses.
Journal of Proteome Research | 2015
Xiaoyang Ge; Chaojun Zhang; Qianhua Wang; Zuoren Yang; Ye Wang; Xueyan Zhang; Zhixia Wu; Yuxia Hou; Jiahe Wu; Fuguang Li
Somatic embryo development (SED) in upland cotton shows low frequencies of embryo maturation and plantlet regeneration. Progress in increasing the regeneration rate has been limited. Here a global analysis of proteome dynamics between globular and cotyledonary embryos was performed using isobaric tags for relative and absolute quantitation to explore mechanisms underlying SED. Of 6318 proteins identified by a mass spectrometric analysis, 102 proteins were significantly up-regulated and 107 were significantly down-regulated in cotyledonary embryos. The differentially expressed proteins were classified into seven functional categories: stress responses, hormone synthesis and signal transduction, carbohydrate and energy metabolism, protein metabolism, cell wall metabolism, cell transport, and lipid metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that stress response, hormone homeostasis, and respiration and photosynthesis were involved in SED. Quantitative real-time PCR analysis confirmed the authenticity and accuracy of the proteomic analysis. Treatment of exogenous hormones showed that abscisic acid and jasmonic acid facilitate SED, whereas gibberellic acid inhibits SED and increases abnormal embryo frequency. Thus, global analysis of proteome dynamics reveals that stress response, hormone homeostasis, and respiration and photosynthesis determined cotton SED. The findings of this research improve the understanding of molecular processes, especially environmental stress response, involved in cotton SED.
PLOS ONE | 2014
Wu Zheng; Xueyan Zhang; Zuoren Yang; Jiahe Wu; Fenglian Li; Lanling Duan; Chuanliang Liu; Lili Lu; Chaojun Zhang; Fuguang Li
Upland cotton (Gossypium hirsutum) is one of the most recalcitrant species for in vitro plant regeneration through somatic embryogenesis. Callus from only a few cultivars can produce embryogenic callus (EC), but the mechanism is not well elucidated. Here we screened a cultivar, CRI24, with high efficiency of EC produce. The expression of genes relevant to EC production was analyzed between the materials easy to or difficult to produce EC. Quantitative PCR showed that CRI24, which had a 100% EC differentiation rate, had the highest expression of the genes GhLEC1, GhLEC2, and GhFUS3. Three other cultivars, CRI12, CRI41, and Lu28 that formed few ECs expressed these genes only at low levels. Each of the genes involved in auxin transport (GhPIN7) and signaling (GhSHY2) was most highly expressed in CRI24, with low levels in the other three cultivars. WUSCHEL (WUS) is a homeodomain transcription factor that promotes the vegetative-to-embryogenic transition. We thus obtained the calli that ectopically expressed Arabidopsis thaliana Wus (AtWus) in G. hirsutum cultivar CRI12, with a consequent increase of 47.75% in EC differentiation rate compared with 0.61% for the control. Ectopic expression of AtWus in CRI12 resulted in upregulation of GhPIN7, GhSHY2, GhLEC1, GhLEC2, and GhFUS3. AtWus may therefore increase the differentiation potential of cotton callus by triggering the auxin transport and signaling pathways.
Scientific Reports | 2015
Zhian Wang; Qing Li; Xiaoyang Ge; Chun-Lin Yang; Xiaoli Luo; Anhong Zhang; juanli xiao; Yingchuan Tian; Gui-Xian Xia; Xiao-Ying Chen; Fuguang Li; Jiahe Wu
Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.
Plant Journal | 2014
Jiahe Wu; Chuanfeng Zhu; Jinhuan Pang; Xiangrong Zhang; Chun-Lin Yang; Gui-Xian Xia; Yingchuan Tian; Chaozu He
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination.
Molecules | 2016
Le Wang; Yue Zhu; Peng Wang; Qiang Fan; Yao Wu; Qing-Zhong Peng; Gui-Xian Xia; Jiahe Wu
Dihydroflavanol 4-reductase (DFR) is a key later enzyme involved in two polyphenols’ (anthocyanins and proanthocyanidins (PAs)) biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1) was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (–)-epicatachin and (–)-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (–)-catachin and (–)-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.
Pest Management Science | 2016
Wenchao Guo; Zhian Wang; Xiaoli Luo; Xin Jin; Jing Chang; Jiang He; Er-xun Tu; Yingchuan Tian; Huaijun Si; Jiahe Wu
BACKGROUND Elimination of selectable marker genes (SMGs) is important for the safe assessment and commercial use of transgenic plants. The destructive and invasive Colorado potato beetle (CPB) poses a serious threat to potato production. In response to this need, selectable marker-free transgenic potato lines expressing cry3A were developed to control the damage and spread of CPB. RESULTS We simultaneously introduced cry3A and npt II genes harboured in different plasmids into the potato genome using the Agrobacterium-mediated cotransformation method. Four selectable marker-free transgenic potato (CT) lines expressing cry3A were developed by self-crossing segregation and molecular analyses, including Southern blot, western blot and enzyme-linked immunosorbent assay (ELISA) assays. CT lines were used in a resistance bioassay against CPB in the laboratory and field. In the laboratory, CT lines exhibited high resistance to CPB, and 100% mortality of first-instar larvae occurred 6 days after infestation. In the field, untransformed plant leaves were almost entirely consumed, with an average of 155 larvae present per plant 25 days after inoculation. However, CT lines showed no damage symptoms, with approximately 2.5 larvae surviving per plant. CONCLUSION We successfully eliminated SMGs from the transgenic potato lines expressing cry3A in order to decrease CPB damage, control the spread of this pest eastwards and alleviate the concern regarding the safe assessment of regulatory requirements.
Frontiers in Plant Science | 2018
Zhennan Zhang; Xiaoyang Ge; Xiaoli Luo; Peng Wang; Qiang Fan; Guang Hu; juanli xiao; Fuguang Li; Jiahe Wu
Gossypium hirsutum is an allotetraploid species, meaning that mutants that are difficult to be generated by classical approaches due to gene redundancy. The CRISPR/Cas9 genome editing system is a robust and highly efficient tool for generating target gene mutants, by which the genes of interest may be functionally dissected and applied through genotype-to-phenotype approaches. In this study, the CRISPR/Cas9 genome editing system was developed in G. hirsutum through editing the Gh14-3-3d gene. In T0 transgenic plants, lots of insertions and deletions (indels) in Gh14-3-3d at the expected target site were detected in the allotetraploid cotton At or Dt subgenomes. The results of the PCR, T7EI digestion and sequencing analyses showed that the indels in Gh14-3-3d gene can be stably transmitted to the next generation. Additionally, the indels in the At and Dt subgenomes were segregated in the T1 transgenic plants following Mendelian law, independing on the T-DNA segregation. Two homozygous Gh14-3-3d-edited plants free of T-DNA were chosen by PCR and sequencing assays in the T1 plants, which were called transgene-clean editing plants and were designated ce1 and ce2 in the T2 lines showed higher resistance to Verticillium dahliae infestation compared to the wild-type plants. Thus, the two transgene-clean edited lines can be used as a germplasm to breed disease-resistant cotton cultivars, possibly avoiding complex and expensive safety assessments of the transgenic plants.
bioRxiv | 2018
Jiahe Wu; Guang Hu; Yu Lei; Le Wang; Jianfen Liu; Ye Tang; Zhennan Zhang; Aiming Chen; Qing-Zhong Peng; Zuoren Yang
Previous reports have shown that many miRNAs were identified at the early induction stage during which Verticillium dahliae localizes at the root surface. In this study, we constructed two sRNA libraries of cotton root responses to this fungus at the later induction stage when the pathogen enters the root vascular tissue. We identified 71 known miRNAs and 378 novel miRNAs from two pathogen-induced sRNAs and the control libraries. Combined with degradome and sRNA sequencing, 178 corresponding miRNA target genes were identified, in which 40 target genes from differentially expressed miRNAs were primarily associated with oxidation-reduction and stress responses. More importantly, we characterized the ghr-miR164-GhNAC100 module in the response of the plant to V dahliae infection. A GUS fusion reporter showed that ghr-miR164 directly cleaved the mRNA of GhNAC100 in the post-transcriptional process. ghr-miR164-silencing increased the resistance of the plant to this fungus, while the knockdown of GhNAC100 elevated the susceptibility of the plant, indicating that ghr-miR164-GhNAC100 modulates plant defence through the post-transcriptional regulation. Our data documented that there are numerous miRNAs at the later induction stage that participate in the plant response to V. dahliae, suggesting that miRNAs play important roles in plant resistance to vascular disease. Highlight According to degradome and sRNA sequencings of cotton root in responses to Verticillium dahliae at the later induction stage, many miRNAs and corresponding targets including ghr-miR164-GhNAC100 module participate plant defence.