Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiahuai Han is active.

Publication


Featured researches published by Jiahuai Han.


Science | 1995

INDEPENDENT HUMAN MAP KINASE SIGNAL-TRANSDUCTION PATHWAYS DEFINED BY MEK AND MKK ISOFORMS

Benoit Derijard; Joel Raingeaud; Tamera Barrett; I-Huan Wu; Jiahuai Han; Richard J. Ulevitch; Roger J. Davis

Mammalian mitogen-activated protein (MAP) kinases include extracellular signal-regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 subgroups. These MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine. Two human MAP kinase kinases (MKK3 and MKK4) were cloned that phosphorylate and activate p38 MAP kinase. These MKK isoforms did not activate the ERK subgroup of MAP kinases, but MKK4 did activate JNK. These data demonstrate that the activators of p38 (MKK3 and MKK4), JNK (MKK4), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways.


Cellular Signalling | 2000

The p38 signal transduction pathway - Activation and function

Koh Ono; Jiahuai Han

The p38 signalling transduction pathway, a Mitogen-activated protein (MAP) kinase pathway, plays an essential role in regulating many cellular processes including inflammation, cell differentiation, cell growth and death. Activation of p38 often through extracellular stimuli such as bacterial pathogens and cytokines, mediates signal transduction into the nucleus to turn on the responsive genes. p38 also transduces signals to other cellular components to execute different cellular responses. In this review, we summarize the characteristics of the major components of the p38 signalling transduction pathway and highlight the targets of this pathway and the physiological function of the p38 activation.


Nature | 2003

Identification of Lps2 as a key transducer of MyD88-independent TIR signalling

Kasper Hoebe; Xiaoping Du; Philippe Georgel; Edith M. Janssen; Koichi Tabeta; Sung Ouk Kim; Jason Goode; Pei Lin; Navjiwan Mann; Suzanne Mudd; Karine Crozat; Sosathya Sovath; Jiahuai Han; Bruce Beutler

In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. TrifLps2 homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when TrifLps2 mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent ‘adaptor X’ pathway is present in some, but not all, macrophages, and implies afferent immune specialization.


Science | 2009

RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis

Duan-Wu Zhang; Jing Shao; Juan Lin; Na Zhang; Bao-Ju Lu; Sheng-Cai Lin; Meng-Qiu Dong; Jiahuai Han

The Grim RIPper Cells can undergo regulated cell death through distinct processes known as apoptosis and necrosis. Regulation of apoptosis is better understood than that of necrosis. In a screen for gene products that participate in control of necrosis in cells treated with TNF (tumor necrosis factor), D.-W. Zhang et al. (p. 332; published online 4 June) identified a protein kinase, RIP3. In cells treated with TNF and a caspase inhibitor that inhibits apoptosis, seven metabolic enzymes interacted with RIP3, some of which are associated with mitochondria. Generation of reactive oxygen species was necessary for TNF-induced necrosis, and depletion of RIP3 reduced the generation of reactive oxygen species. Thus, RIP3 may participate in the mechanisms that link energy metabolism with mechanisms of cell death. The protein kinase RIP3 mediates necrotic cell death, likely through regulation of metabolic enzymes. Necrosis can be induced by stimulating death receptors with tumor necrosis factor (TNF) or other agonists; however, the underlying mechanism differentiating necrosis from apoptosis is largely unknown. We identified the protein kinase receptor-interacting protein 3 (RIP3) as a molecular switch between TNF-induced apoptosis and necrosis in NIH 3T3 cells and found that RIP3 was required for necrosis in other cells. RIP3 did not affect RIP1-mediated apoptosis but was required for RIP1-mediated necrosis and the enhancement of necrosis by the caspase inhibitor zVAD. By activating key enzymes of metabolic pathways, RIP3 regulates TNF-induced reactive oxygen species production, which partially accounts for RIP3’s ability to promote necrosis. Our data suggest that modulation of energy metabolism in response to death stimuli has an important role in the choice between apoptosis and necrosis.


Cell Research | 2005

ACTIVATION AND SIGNALING OF THE P38 MAP KINASE PATHWAY

Tyler Zarubin; Jiahuai Han

ABSTRACTThe family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.


Journal of Biological Chemistry | 1998

Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family

Yibin Wang; Shuang Huang; Valerie P. Sah; John Ross; Joan Heller Brown; Jiahuai Han; Kenneth R. Chien

p38 mitogen-activated protein (MAP) kinase activities were significantly increased in mouse hearts after chronic transverse aortic constriction, coincident with the onset of ventricular hypertrophy. Infection of cardiomyocytes with adenoviral vectors expressing upstream activators for the p38 kinases, activated mutants of MAP kinase kinase 3b(E) (MKK3bE) and MAP kinase kinase 6b(E) (MKK6bE), elicited characteristic hypertrophic responses, including an increase in cell size, enhanced sarcomeric organization, and elevated atrial natriuretic factor expression. Overexpression of the activated MKK3bE in cardiomyocytes also led to an increase in apoptosis. The hypertrophic response was enhanced by co-infection of an adenoviral vector expressing wild type p38β, and was suppressed by the p38β dominant negative mutant. In contrast, the MKK3bE-induced cell death was increased by co-infection of an adenovirus expressing wild type p38α, and was suppressed by the dominant negative p38α mutant. This provides the first evidence in any cell system for divergent physiological functions for different members of the p38 MAP kinase family. The direct involvement of p38 pathways in cardiac hypertrophy and apoptosis suggests a significant role for p38 signaling in the pathophysiology of heart failure.


Journal of Biological Chemistry | 1996

CHARACTERIZATION OF THE STRUCTURE AND FUNCTION OF A NEW MITOGEN-ACTIVATED PROTEIN KINASE (P38BETA )

Yong Jiang; Canhe Chen; Zhuangjie Li; Wei Guo; Julie A. Gegner; Sheng-Cai Lin; Jiahuai Han

Mitogen-activated protein (MAP) kinase cascades represent one of the major signal systems used by eukaryotic cells to transduce extracellular signals into cellular responses. Four MAP kinase subgroups have been identified in humans: ERK, JNK (SAPK), ERK5 (BMK), and p38. Here we characterize a new MAP kinase, p38β. p38β is a 372-amino acid protein most closely related to p38. It contains a TGY dual phosphorylation site, which is required for its kinase activity. Like p38, p38β is activated by proinflammatory cytokines and environmental stress. A comparison of events associated with the activation of p38β and p38 revealed differences, most notably in the preferred activation of p38β by MAP kinase kinase 6 (MKK6), whereas p38 was activated nearly equally by MKK3, MKK4, and MKK6. Moreover, in vitro and in vivo experiments showed a strong substrate preference by p38β for activating transcription factor 2 (ATF2). Enhancement of ATF2-dependent gene expression by p38β was ∼20-fold greater than that of p38 and other MAP kinases tested. The data reported here suggest that while closely related, p38β and p38 may be regulated by differing mechanisms and may exert their actions on separate downstream targets.


Journal of Biological Chemistry | 1995

Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1.

Shengjia Zhang; Jiahuai Han; Mary Ann Sells; Jonathan Chernoff; Ulla G. Knaus; Richard J. Ulevitch; Gary M. Bokoch

The stress-activated p38 mitogen-activated protein (MAP) kinase defines a subgroup of the mammalian MAP kinases that appear to play a key role in regulating inflammatory responses. Co-expression of constitutively active forms of Rac and Cdc42 leads to activation of p38 while dominant negative Rac and Cdc42 inhibit the ability of interleukin-1 to increase p38 activity. p21-activated kinase 1 (Pak1) is a potential mediator of Rac/Cdc42 signaling, and we observe that Pak1 stimulates p38 activity. A dominant negative Pak1 suppresses both interleukin-1- and Rac/Cdc42-induced p38 activity. Rac and Cdc42 appear to regulate a protein kinase cascade initiated at the level of Pak and leading to activation of p38 and JNK.


The EMBO Journal | 1997

BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C.

Yutaka Kato; Vladimir V. Kravchenko; Richard I. Tapping; Jiahuai Han; Richard J. Ulevitch; Jiing Dwan Lee

Big MAP kinase 1 (BMK1), also known as ERK5, is a mitogen‐activated protein (MAP) kinase member whose biological role is largely undefined. We have shown previously that the activity of BMK1 in rat smooth muscle cells is up‐regulated by oxidants. Here, we describe a constitutively active form of the MAP kinase kinase, MEK5(D), which selectively activates BMK1 but not other MAP kinases in vivo. Through utilization of MEK5(D), we have determined that a member of the MEF2 transcription factor family, MEF2C, is a protein substrate of BMK1. BMK1 dramatically enhances the transactivation activity of MEF2C by phosphorylating a serine residue at amino acid position 387 in this transcription factor. Serum is also a potent stimulator of BMK1‐induced MEF2C phosphorylation, since a dominant‐negative form of BMK1 specifically inhibits serum‐induced activation of MEF2C. One consequence of MEF2C activation is increased transcription of the c‐jun gene. Taken together, these results strongly suggest that in some cell types the MEK5/BMK1 MAP kinase signaling pathway regulates serum‐induced early gene expression through the transcription factor MEF2C.


Journal of Biological Chemistry | 1996

Characterization of the structure and function of a novel MAP kinase kinase (MKK6)

Jiahuai Han; Jiing-Dwan Lee; Yong Jiang; Zhuangjie Li; Lili Feng; Richard J. Ulevitch

Mitogen-activated protein (MAP) kinases require dual phosphorylation on threonine and tyrosine residues in order to gain enzymatic activity. This activation is carried out by a family of enzymes known as MAP kinase kinases (MKKs or MEKs). It appears that there are at least four subgroups in this family; MEK1/MEK2 subgroup that activates ERK1/ERK2, MEK5 that activates ERK5/BMK1, MKK3 that activates p38, and MKK4 that activates p38 and Jun kinase. Here we describe the characteristics of a new MKK termed MKK6. The clones we isolated encode two splice isoforms of human MKK6 comprised of 278 and 334 amino acids, respectively, and one murine MKK6 with 237 amino acids. Sequence information derived from cDNA cloning indicated that MKK6 is most closely related to MKK3. The functional data revealed from co-transfection assays suggests that MKK6, like MKK3, selectively phosphorylates p38. Unlike the previously described MKKs (or MEKs), MKK6 exists in a variety of alternatively spliced isoforms with distinct patterns of tissue expression. This suggests novel mechanisms regulating activation and/or function of various forms of MKK6.

Collaboration


Dive into the Jiahuai Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liguo New

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Young Jun Kang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sung Ouk Kim

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Huang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Yong Jiang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge