Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiajing Zhou is active.

Publication


Featured researches published by Jiajing Zhou.


ACS Applied Materials & Interfaces | 2013

Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification.

Hongcai Gao; Yimin Sun; Jiajing Zhou; Rong Xu; Hongwei Duan

We present a one-step approach to polydopamine-modified graphene hydrogel, with dopamine serving as both reductant and surface functionalization agents. The synthetic method is based on the spontaneous polymerization of dopamine and the self-assembly of graphene nanosheets into porous hydrogel structures. Benefiting from the abundant functional groups of polydopamine and the high specific surface areas of graphene hydrogel with three-dimensional interconnected pores, the prepared material exhibits high adsorption capacities toward a wide spectrum of contaminants, including heavy metals, synthetic dyes, and aromatic pollutants. Importantly, the free-standing graphene hydrogel can be easily removed from water after adsorption process, and can be regenerated by altering the pH values of the solution for adsorbed heavy metals or using low-cost alcohols for synthetic dyes and aromatic molecules.


Journal of the American Chemical Society | 2012

Self-Assembled Plasmonic Vesicles of SERS-Encoded Amphiphilic Gold Nanoparticles for Cancer Cell Targeting and Traceable Intracellular Drug Delivery

Jibin Song; Jiajing Zhou; Hongwei Duan

We report the development of bioconjugated plasmonic vesicles assembled from SERS-encoded amphiphilic gold nanoparticles for cancer-targeted drug delivery. This new type of plasmonic assemblies with a hollow cavity can play multifunctional roles as delivery carriers for anticancer drugs and SERS-active plasmonic imaging probes to specifically label targeted cancer cells and monitor intracellular drug delivery. We have shown that the pH-responsive disassembly of the plasmonic vesicle, stimulated by the hydrophobic-to-hydrophilic transition of the hydrophobic brushes in acidic intracellular compartments, allows for triggered intracellular drug release. Because self-assembled plasmonic vesicles exhibit significantly different plasmonic properties and greatly enhanced SERS intensity in comparison with single gold nanoparticles due to strong interparticle plasmonic coupling, disassembly of the vesicles in endocytic compartments leads to dramatic changes in scattering properties and SERS signals, which can serve as independent feedback mechanisms to signal cargo release from the vesicles. The unique structural and optical properties of the plasmonic vesicle have made it a promising platform for targeted combination therapy and theranostic applications by taking advantage of recent advances in gold nanostructure based in vivo bioimaging and photothermal therapy and their loading capacity for both hydrophilic (nucleic acids and proteins) and hydrophobic (small molecules) therapeutic agents.


Journal of the American Chemical Society | 2014

SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes.

Jibin Song; Bo Duan; Chenxu Wang; Jiajing Zhou; Lu Pu; Zheng Fang; Peng Wang; Teik-Thye Lim; Hongwei Duan

We report a new strategy to synthesize core-shell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core-shell nanoparticles with integrated optical, electronic, and magnetic properties.


ACS Nano | 2013

Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods.

Jibin Song; Lu Pu; Jiajing Zhou; Bo Duan; Hongwei Duan

We have developed surface-initiated organocatalytic ring-opening polymerization on functional nanocrystals and synthesized amphiphilic gold nanorods carrying well-defined mixed polymer brushes of poly(ethylene glycol) and polylactide. Self-assembly of the amphiphilic gold nanorods affords biodegradable plasmonic vesicles that can be destructed by both enzymatic degradation and near-infrared photothermal heating. When tagged with Raman probes, strongly coupled gold nanorods in the self-assembled vesicles give rise to highly active SERS signals. The biodegradable plasmonic vesicles exhibit a unique combination of optical and structural properties that are of particular interest for theranostic applications. We have demonstrated that bioconjugated SERS-active plasmonic vesicles can specifically target EpCAM-positive cancer cells, leading to ultrasensitive spectroscopic detection of cancer cells. Furthermore, integration of photothermal effect of gold nanorods and large loading capacity of the vesicles provides opportunities for localized synergistic photothermal ablation and photoactivated chemotherapy, which have shown higher efficiency in killing targeted cancer cells than either single therapeutic modality. The versatile chemistry of organocatalytic ring-opening polymerization, in conjugation with recent development in synthesizing functional nanocrystals with tailored optical, electronic, and magnetic properties opens the possibilities for constructing multifunctional biodegradable platforms for clinical translation.


Advanced Materials | 2014

Interfacial Assembly of Mussel‐Inspired Au@Ag@ Polydopamine Core–Shell Nanoparticles for Recyclable Nanocatalysts

Jiajing Zhou; Bo Duan; Zheng Fang; Jibin Song; Chenxu Wang; Phillip B. Messersmith; Hongwei Duan

Recyclable nanocatalysts of core-shell bimetallic nanocrystals are developed through polydopamine coating-directed one-step seeded growth, interfacial assembly, and substrate-immobilization of Au@Ag core-shell nanocrystals. This strategy provides new opportunities to design and optimize heterogeneous nanocatalysts with tailored size, morphology, chemical configuration, and supporting substrates for metal-catalyzed reactions.


ACS Nano | 2015

Versatile Core–Shell Nanoparticle@Metal–Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration

Jiajing Zhou; Peng Wang; Chenxu Wang; Zheng Fang; Phillip B. Messersmith; Hongwei Duan

We report a versatile strategy based on the use of multifunctional mussel-inspired polydopamine for constructing well-defined single-nanoparticle@metal-organic framework (MOF) core-shell nanohybrids. The capability of polydopamine to form a robust conformal coating on colloidal substrates of any composition and to direct the heterogeneous nucleation and growth of MOFs makes it possible for customized structural integration of a broad range of inorganic/organic nanoparticles and functional MOFs. Furthermore, the unique redox activity of polydopamine adds additional possibilities to tailor the functionalities of the nanohybrids by sandwiching plasmonic/catalytic metal nanostructures between the core and shell via localized reduction. The core-shell nanohybrids, with the molecular sieving effect of the MOF shell complementing the intrinsic properties of nanoparticle cores, represent a unique class of nanomaterials of considerable current interest for catalysis, sensing, and nanomedicine.


ACS Nano | 2016

Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality

Jiajing Zhou; Qirong Xiong; Jielin Ma; Jinghua Ren; Phillip B. Messersmith; Peng Chen; Hongwei Duan

We present a platform strategy that offers diverse flexibility in tailoring the structure and properties of core-shell plasmonic nanoparticles with built-in nanogaps. Our results have demonstrated that polydopamine serves multiple concerted functions as a nanoscale spacer to afford controllable nanogap sizes, a redox-active coating to promote metal shell growth, and a reactive scaffold to exclusively lock molecular probes inside the nanogap for surface-enhanced Raman scattering (SERS). More interestingly, the universal adhesion of polydopamine on diverse colloidal substrates allows for customized synthesis of multishell plasmonic nanogapped nanoparticles (NNPs) and multifunctional hybrid NNPs containing different cores (i.e., magnetic nanoparticles), which are not readily accessible by conventional methods. Internally coupled plasmonic NNPs with broadly tunable spectroscopic properties, highly active SERS, and multifunctionality hold great promise for emerging fields, such as sensing, optoelectronics, and theranostics, as demonstrated by the ultrasensitive SERS detection and efficient photothermal killing of food-borne pathogens here.


ACS Nano | 2018

Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window

Jiajing Zhou; Yuyan Jiang; Shuai Hou; Paul Kumar Upputuri; Di Wu; Jingchao Li; Peng Wang; Xu Zhen; Manojit Pramanik; Kanyi Pu; Hongwei Duan

We have developed a class of blackbody materials, i. e., hyperbranched Au plasmonic blackbodies (AuPBs), of compact sizes (<50 nm). The AuPBs were prepared in a seedless and surfactant-free approach based on the use of mussel-inspired dopamine. Strong intraparticle plasmonic coupling among branches in close proximity leads to intense and uniform broadband absorption across 400-1350 nm. The blackbody absorption imparts the compact AuPB with a superior photothermal efficiency of >80% and closely matched photothermal activity in the first near-infrared (NIR-I) and the second near-infrared (NIR-II) spectral windows, making it a rare broadband theranostic probe for integrated photoacoustic imaging and photothermal therapy (PTT). Our comparative study, using the same probe, has demonstrated that the improved PTT outcome of NIR-II over NIR-I primarily results from its higher maximum permission exposure (MPE) rather than the deeper tissue penetration favored by longer wavelengths. The compact plasmonic broadband nanoabsorbers with tailored surface properties hold potential for a wide spectrum of light-mediated applications.


Bioconjugate Chemistry | 2016

Robust Nanoparticle–DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly

Chenxu Wang; Jiajing Zhou; Peng Wang; Wenshan He; Hongwei Duan

We have demonstrated that mussel-inspired polydopamine can serve as an intermediate coating layer for covalently attaching oligonucleotides on nanostructures of diverse chemical nature, which are made possible by the universal adhesion and spontaneous reactivity of polydopamine. Our results have shown that polydopamine can strongly bond to representative nanoparticles (i.e., Au nanoparticles and magnetic polymer nanobeads) and form a thin layer of coating that allows for attachment of commercially available DNA with thiol or amine end functionality. The resulting DNA-nanoparticle conjugates not only show excellent chemical and thermal stability and high loading density of DNA, but the linked DNA also maintain their biological functions in directing cancer cell targeting and undergo DNA hybridization to form multifunctional magnetic core-plasmonic satellite assemblies. The generally applicable strategy opens new opportunities for easy adoption of DNA-nanoparticle conjugates for broad applications in biosensors and nanomedicine.


Nature Communications | 2018

Magnetic nanochain integrated microfluidic biochips

Qirong Xiong; Chun Yee Lim; Jinghua Ren; Jiajing Zhou; Kanyi Pu; Mary B. Chan-Park; Hui Mao; Yee Cheong Lam; Hongwei Duan

Microfluidic biochips hold great potential for liquid analysis in biomedical research and clinical diagnosis. However, the lack of integrated on-chip liquid mixing, bioseparation and signal transduction presents a major challenge in achieving rapid, ultrasensitive bioanalysis in simple microfluidic configurations. Here we report magnetic nanochain integrated microfluidic chip built upon the synergistic functions of the nanochains as nanoscale stir bars for rapid liquid mixing and as capturing agents for specific bioseparation. The use of magnetic nanochains enables a simple planar design of the microchip consisting of flat channels free of common built-in components, such as liquid mixers and surface-anchored sensing elements. The microfluidic assay, using surface-enhanced Raman scattering nanoprobes for signal transduction, allows for streamlined parallel analysis of multiple specimens with greatly improved assay kinetics and delivers ultrasensitive identification and quantification of a panel of cancer protein biomarkers and bacterial species in 1 μl of body fluids within 8 min.Microfluidic platforms are an attractive setup for performing clinical tests but integrated liquid mixing and bioseparation is difficult at small scales. Here Xiong et al. propose magnetic nanochains which can stir the solution and capture agents and thus enable liquid analysis in a short amount of time.

Collaboration


Dive into the Jiajing Zhou's collaboration.

Top Co-Authors

Avatar

Hongwei Duan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Chenxu Wang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Zheng Fang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jibin Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bo Duan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Peng Wang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Pu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Qirong Xiong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Rong Xu

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge